Trục căn ở mẫu các biểu thức sau:
A=\(\frac{1}{\sqrt{x}+\sqrt{y}+\sqrt{z}}\)
Trục căn thức ở mẫu:
a) \(\frac{1}{\sqrt{2}+\sqrt{3}-\sqrt{6}}\)
b)\(\frac{1}{\sqrt{x}+\sqrt{y}+\sqrt{z}}\)
\(a,\frac{1}{\sqrt{2}+\sqrt{3}-\sqrt{6}}=\frac{\sqrt{2}+\sqrt{3}+\sqrt{6}}{\left(\sqrt{2}+\sqrt{3}-\sqrt{6}\right)\left(\sqrt{2}+\sqrt{3}+\sqrt{6}\right)}=\frac{\sqrt{2}+\sqrt{3}+\sqrt{6}}{\left(\sqrt{2}+\sqrt{3}\right)^2-\sqrt{6}^2}\)
\(=\frac{\sqrt{2}+\sqrt{3}+\sqrt{6}}{2\sqrt{6}-1}=\frac{\left(\sqrt{2}+\sqrt{3}+\sqrt{6}\right)\left(2\sqrt{6}+1\right)}{2\sqrt{6}^2-1^2}=\frac{4\sqrt{3}+6\sqrt{2}+12+\sqrt{2}+\sqrt{3}+\sqrt{6}}{11}\)\(=\frac{\sqrt{6}+5\sqrt{3}+7\sqrt{2}+12}{11}\)
\(b,\frac{1}{\sqrt{x}+\sqrt{y}+\sqrt{z}}=\frac{\sqrt{x}+\sqrt{y}-\sqrt{z}}{\left(\sqrt{z}+\sqrt{y}+\sqrt{z}\right)\left(\sqrt{x}+\sqrt{y}-\sqrt{z}\right)}=\frac{\sqrt{x}+\sqrt{y}-\sqrt{z}}{\left(\sqrt{x}+\sqrt{y}\right)^2-\sqrt{z}^2}\)
\(=\frac{\sqrt{x}+\sqrt{y}-\sqrt{z}}{x+2\sqrt{xy}+y-z}\)
trục căn thức ở mẫu
\(\frac{\sqrt{x}+\sqrt{y}}{\sqrt{5x}-\sqrt{y}}\)
Trục căn thức ở mẫu của các biểu thức sau:
\(\dfrac{\sqrt{5}-\sqrt{3}}{\sqrt{2}}\); \(\dfrac{1}{\sqrt{3}+\sqrt{2}+1}\)
\(\dfrac{\sqrt{5}-\sqrt{3}}{\sqrt{2}}=\dfrac{\sqrt{2}\left(\sqrt{5}-\sqrt{3}\right)}{\sqrt{2}.\sqrt{2}}=\dfrac{\sqrt{10}-\sqrt{6}}{2}\)
\(\dfrac{1}{\sqrt{3}+\sqrt{2}+1}=\dfrac{\sqrt{3}-\sqrt{2}-1}{\left(\sqrt{3}+\sqrt{2}+1\right)\left(\sqrt{3}-\sqrt{2}-1\right)}\)
\(=\dfrac{\sqrt{3}-\sqrt{2}-1}{3-\left(\sqrt{2}+1\right)^2}=\dfrac{\sqrt{3}-\sqrt{2}-1}{-2\sqrt{2}}=\dfrac{\left(\sqrt{3}-\sqrt{2}-1\right)\sqrt{2}}{-2\sqrt{2}.\sqrt{2}}=\dfrac{\sqrt{6}-2-\sqrt{2}}{-4}\)
\(=\dfrac{2+\sqrt{2}-\sqrt{6}}{4}\)
\(\dfrac{\sqrt{5}-\sqrt{3}}{\sqrt{2}}=\dfrac{\sqrt{10}-\sqrt{6}}{2}\)
\(\dfrac{1}{\sqrt{3}+\sqrt{2}+1}=\dfrac{2+\sqrt{2}-\sqrt{6}}{4}\)
Trục căn thức ở mẫu và giả thiết các biểu thức đều có nghĩa:
\(\dfrac{2}{\sqrt{6}-\sqrt{5}};\dfrac{3}{\sqrt{10}+\sqrt{7}};\dfrac{1}{\sqrt{x}-\sqrt{y}};\dfrac{2ab}{\sqrt{a}-\sqrt{b}}.\)
\(\dfrac{2ab}{\sqrt{a}-\sqrt{b}}=\dfrac{2ab\left(\sqrt{a}+\sqrt{b}\right)}{\left(\sqrt{a}-\sqrt{b}\right)\left(\sqrt{a}+\sqrt{b}\right)}=\dfrac{2ab\left(\sqrt{a}+\sqrt{b}\right)}{a-b}\)
\(\dfrac{1}{\sqrt{x}-\sqrt{y}}=\dfrac{\sqrt{x}+\sqrt{y}}{\left(\sqrt{x}-\sqrt{y}\right)\left(\sqrt{x}+\sqrt{y}\right)}=\dfrac{\sqrt{x}+\sqrt{y}}{x-y}\)
\(\dfrac{3}{\sqrt{10}+\sqrt{7}}=\dfrac{3\left(\sqrt{10}-\sqrt{7}\right)}{\left(\sqrt{10}+\sqrt{7}\right)\left(\sqrt{10}-\sqrt{7}\right)}=\dfrac{3\left(\sqrt{10}-\sqrt{7}\right)}{10-7}=\dfrac{3\left(\sqrt{10}-\sqrt{7}\right)}{3}=\sqrt{10}-\sqrt{7}\)
\(\dfrac{2}{\sqrt{6}-\sqrt{5}}=\dfrac{2\left(\sqrt{6}+\sqrt{5}\right)}{\left(\sqrt{6}-\sqrt{5}\right)\left(\sqrt{6}+\sqrt{5}\right)}=\dfrac{2\left(\sqrt{6}+\sqrt{5}\right)}{6-5}=2\left(\sqrt{6}+\sqrt{5}\right)\)
Trục căn thức ở mẫu các biểu thức sau:
\(a,\frac{\sqrt{5}}{\sqrt{3-\sqrt{5}}}\)
\(b,\frac{31}{2+\sqrt{2}-\sqrt{5}}\)
\(a,\frac{\sqrt{5}}{\sqrt{3-\sqrt{5}}}=\frac{\sqrt{5}\left(\sqrt{3+\sqrt{5}}\right)}{\sqrt{\left(3-\sqrt{5}\right).\left(3+\sqrt{5}\right)}}\)
\(=\frac{\sqrt{5}\left(\sqrt{3+\sqrt{5}}\right)}{\sqrt{9-5}}=\frac{\sqrt{5}\left(\sqrt{3+\sqrt{5}}\right)}{\sqrt{4}}=\frac{\sqrt{5}\left(\sqrt{3+\sqrt{5}}\right)}{2}\)
Trục căn thức ở mẫu
a) A= \(\frac{1}{\sqrt{2}+\sqrt{3}-\sqrt{6}}\)
b) B = \(\frac{1}{\sqrt{x}+\sqrt{y}+\sqrt{z}}\)
c) C = \(\frac{12}{\sqrt{7}+2\sqrt{6}}\)
Trục căn thức ở mẫu các biểu thức sau:
A=\(\frac{\sqrt{2}+1}{2\sqrt{3}+\sqrt{2}}\); B=\(\frac{1}{\sqrt{2}+\sqrt{2-\sqrt{2}}}\); C=\(\frac{1}{\sqrt{3}-\sqrt{2}+1}\)
GIÚP MÌNH VỚI M.N (T_T) ~ MÌNH CẦN GẤP LẮM
bạn hãy nhân ở mẫu với biểu thức tương ướng để tạo ra biểu thức liên hợp , là HĐT số 3 ạ
Trục căn thức ở mẫu các biểu thức sau:
\(a,\frac{2\sqrt{10}-5}{4-\sqrt{10}}\)
\(b,\frac{9-2\sqrt{2}}{3\sqrt{6}-2\sqrt{2}}\)
\(a,\frac{2\sqrt{10}-5}{4-\sqrt{10}}=\frac{\left(2\sqrt{10}-5\right)\left(4+\sqrt{10}\right)}{\left(4-\sqrt{10}\right)\left(4+\sqrt{10}\right)}=\frac{20+6\sqrt{10}-5\sqrt{10}-9}{16-10}.\)
\(=\frac{11-\sqrt{10}}{6}\)
\(b,=\frac{\left(9-2\sqrt{2}\right)\left(3\sqrt{6}+2\sqrt{2}\right)}{\left(3\sqrt{6}-2\sqrt{2}\right)\left(3\sqrt{6}+2\sqrt{2}\right)}=\frac{\left(9-2\sqrt{2}\right)\left(3\sqrt{6}+2\sqrt{2}\right)}{54-8}\)
\(=\frac{\left(9-2\sqrt{2}\right)\left(3\sqrt{6}+2\sqrt{2}\right)}{46}\)
Trục căn thức ở mẫu và giả thiết các biểu thức đều có nghĩa:
\(\dfrac{5}{\sqrt{10}};\dfrac{5}{2\sqrt{5}};\dfrac{1}{3\sqrt{20}};\dfrac{2\sqrt{2}+2}{5\sqrt{2}};\dfrac{y+b\sqrt{y}}{b.\sqrt{y}}.\)
Nhat Linh bị nhầm câu cuối:
\(\dfrac{y+b\sqrt{y}}{b.\sqrt{y}}=\dfrac{y\sqrt{y}+b.y}{b.y}=\dfrac{\sqrt{y}+b}{b}.\)