Chứng minh rằng nếu: a/b= c/d thì
a+b/a-b= c+d/c-d
Chứng minh rằng : Nếu \(\dfrac{a}{b}\)=\(\dfrac{c}{d}\) thì
a.\(\dfrac{a}{c}\)=\(\dfrac{b}{d}\) b.\(\dfrac{a}{b}\)=\(\dfrac{a+c}{b+c}\) c.\(\dfrac{a}{c}\)=\(\dfrac{a-b}{c-d}\) d.\(\dfrac{a+b}{c+d}\)=\(\dfrac{a-b}{c-d}\)
a: Ta có: \(\dfrac{a}{b}=\dfrac{c}{d}\)
nên \(\dfrac{a}{c}=\dfrac{b}{d}\)
d: Ta có: \(\dfrac{a}{b}=\dfrac{c}{d}\)
nên \(\dfrac{a}{c}=\dfrac{b}{d}\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{a}{c}=\dfrac{b}{d}=\dfrac{a+b}{c+d}=\dfrac{a-b}{c-d}\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{a}{b}=\dfrac{c}{d}=\dfrac{a+c}{b+d}\)
hay \(\dfrac{a}{b}=\dfrac{a+c}{b+d}\)
Ta có: \(\dfrac{a}{b}=\dfrac{c}{d}\)
nên \(\dfrac{a}{c}=\dfrac{b}{d}\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{a}{c}=\dfrac{b}{d}=\dfrac{a-b}{c-d}\)
hay \(\dfrac{a}{c}=\dfrac{a-b}{c-d}\)
Nếu a/b=c/d với b,d ≠ 0 thì
a. a=c b. a.c=b.d c. a.d=b.c d. b=d
Theo tính chất của tỉ lệ thức
`a/b=c/d -> a*d=b*c`
Xét các đ/án trên `-> C.`
nếu a/b+c/d=0 thì
A a/b= -c/d B a/b=c/-d C a/b= -c/d
D cả ba đều đúng
cho tỉ lệ thức a+b/b+c=c+d/d+a nếu a khác c thìa a+b+c+d = ........
Chứng minh rằng nếu:
(a + b + c + d) (a - b - c + d) = (a - b + c - d) (a + b - c - d)
thì\(\dfrac{a}{c}\)=\(\dfrac{b}{d}\)
(a, b, c, d khác 0)
Ta có: \(\left(a+b+c+d\right)\left(a-b-c+d\right)=\left(a-b+c-d\right)\left(a+b-c-d\right)\)
\(\Leftrightarrow\left(a+d\right)^2-\left(b+c\right)^2=\left(a-d\right)^2-\left(b-c\right)^2\)
\(\Leftrightarrow\left(a+d-a+d\right)\left(a+d+a-d\right)=\left(b+c-b+c\right)\left(b+c+b-c\right)\)
\(\Leftrightarrow2d\cdot2a=2c\cdot2b\)
\(\Leftrightarrow ad=bc\)
hay \(\dfrac{a}{c}=\dfrac{b}{d}\)
Câu 6. Nếu a.b = c.d thì
A. a/b
B. d/c = a/b
C. c/b = d/a
D. b/c = d/a
a)Chứng minh rằng nếu a^4 +b^4 +c^4 +d^4 =4abcd và a,b,c,d là các số dương thì a =b=c=d
b)Chứng minh rằng nếu m= a+ b +c thì (am+ bc )(bm+ac)(cm+ab)= (a+b)^2 (a+c )^2 (b+c)^2
b, Ta có \(m=a+b+c\)
\(\Rightarrow am+bc=a\left(a+b+c\right)+bc=a\left(a+b\right)+ac+bc=\left(a+c\right)\left(a+b\right)\)
CMTT \(bm+ac=\left(b+c\right)\left(b+a\right)\);\(cm+ab=\left(c+a\right)\left(c+b\right)\)
Suy ra \(\left(am+bc\right)\left(bm+ac\right)\left(cm+ab\right)=\left(a+b\right)^2\left(a+c\right)^2\left(b+c\right)^2\)
nếu a/b+c/d=0 thì
A a/b= -c/d B a/b=c/-d C a/b= -c/d
D cả ba đều đúng
giúp mình với ạ
Chứng minh rằng nếu a+b/b+c =c+d/d+a (c+d khác 0) thì a=c và a+b+c+d=0
Chứng minh rằng: Nếu a/b = c/d thì a/b = a+c/b+d = a-c/b-d (b khác d)
Áp dụng tính chất dãy tỉ số bằng nhau ,ta có :
\(\frac{a}{b}=\frac{c}{d}=\frac{a+c}{b+d}=\frac{a-c}{b-d}\)
\(\Rightarrow\frac{a}{b}=\frac{a+c}{b+d}=\frac{a-c}{b-d}\)