Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Lth Hương
Xem chi tiết
Nguyễn Lê Phước Thịnh
24 tháng 7 2021 lúc 18:38

Xét ΔABC có 

BE là đường trung tuyến ứng với cạnh AC

CD là đường trung tuyến ứng với cạnh AB

BE cắt CD tại G

Do đó: G là trọng tâm của ΔABC

Suy ra: AG là đường trung tuyến ứng với cạnh huyền BC

mà AG cắt BC tại F

nên F là trung điểm của BC

hay BF=FC(đpcm)

Nga Trần Thị Tuyếts
Xem chi tiết
NHU DUC TRAN
Xem chi tiết
Lê Song Phương
26 tháng 6 2023 lúc 19:51

a) Ý 1: Dựa vào \(\widehat{AEB}=\widehat{DAB}=90^o\) và \(\widehat{ABD}\) chung, suy ra \(\Delta ABE~\Delta DBA\left(g.g\right)\)

  Ý 2: Từ \(\Delta ABE~\Delta DBA\Rightarrow\dfrac{AB}{BD}=\dfrac{BE}{AB}\Rightarrow AB^2=BE.BD\)

b) Dễ thấy \(\widehat{DEF}=\widehat{BEG}=90^o\) và \(\widehat{DFE}=\widehat{EBG}\) (vì cùng phụ với \(\widehat{BDC}\)) nên suy ra \(\Delta EDF~\Delta EGB\left(g.g\right)\) \(\Rightarrow\dfrac{ED}{EG}=\dfrac{EF}{EB}\) \(\Rightarrow EG.EF=ED.EB\)   (1)

 Mặt khác, dễ dàng cm \(\Delta EAD~\Delta EBA\left(g.g\right)\) \(\Rightarrow\dfrac{EA}{EB}=\dfrac{ED}{EA}\) \(\Rightarrow EA^2=EB.ED\)    (2)

Từ (1) và (2) \(\Rightarrow EA^2=EG.EF\left(=EB.ED\right)\)

c) Dễ thấy F là trực tâm của \(\Delta GBD\)\(\Delta GED\) vuông tại E có trung tuyến EH nên \(EH=\dfrac{1}{2}DG\). Tương tự suy ra \(CH=\dfrac{1}{2}DG\). Từ đó \(EH=DH\). Suy ra H nằm trên đường trung trực của đoạn CE  (3)

 Mặt khác, \(\Delta EBF\) vuông tại E có trung tuyến EI nên \(EI=\dfrac{1}{2}BF\). Tương tự, ta có \(CI=\dfrac{1}{2}BF\). Do đó \(EI=CI\) hay I nằm trên đường trung trực của đoạn CE   (4)

 Từ (3) và (4), suy ra HI là đường trung trực của đoạn CE, suy ra \(HI\perp CE\) (đpcm)

Lê Song Phương
26 tháng 6 2023 lúc 19:51

Hình vẽ đây nhé

Thợ săn yêu tinh
Xem chi tiết
Nguyễn Linh Chi
24 tháng 6 2020 lúc 12:16

Giải: 

a) Xét \(\Delta\)ADF và \(\Delta\)EDC  có: 

^DAF = ^DEC = 90 độ 

^ADF = ^EDC  ( đối đỉnh ) 

=> \(\Delta\)ADF ~ \(\Delta\)EDC ( g-g) 

=> AD/DE = DF/DC

=> AD.DC = DE.DF

b) Xét \(\Delta\)BEF  và \(\Delta\)DEC 

có: ^BEF = ^DEC = 90 độ 

^BFE = ^ECD ( theo (a) )

=> \(\Delta\)BEF~ \(\Delta\)DEC

=> BE/EF = DE/EC => BE.EC= DE/EF

c) BA.BF + DC.AC

=BA(BA + AF) + ( AC - AD ) DC 

= AB^2 + AC^2 + ( BA.AF - AD.DC) 

Dễ cm \(\Delta\)ADF ~ \(\Delta\)ABC 

=> AD/AB = AF / AC

=> AD.AC = AB .AF 

=> AD.AC - AB .AF =0 

Vậy BA.BF + DC.AC = AB^2 + AC^2 =BC^2

Khách vãng lai đã xóa
Hoàng Gia 	Nguyên
Xem chi tiết
Thợ săn yêu tinh
Xem chi tiết
Vân Anh Lê
Xem chi tiết
Nguyễn Thị Ngọc Ánh
Xem chi tiết
Phương Anh Nguyễn Thị
Xem chi tiết
Đào Thị Huyền
3 tháng 11 2017 lúc 11:58

A B C D E F N M O

xét tam giác ADF vuông tại D

tam giác BAE vuông tại A

có AB = AD ( t/c Hvuông)

AE = DF ( GT)

=> \(\Delta ADF=\Delta BAE\) ( 2cgv)

=> \(\widehat{B_1}=\widehat{A_1}\) (2 góc t/ư)

b) có AB // CD (t/c Hvuông)

=> \(\widehat{A_2}=\widehat{AFD}\) (2 góc SLT)

tam giác ADF có \(\widehat{D}=90^0\)=>\(\widehat{A_1}+\widehat{AFD}=90^0\)

\(\widehat{B_1}=\widehat{A_1},\widehat{A_2}=\widehat{AFD}\) (cmt)

=>\(\widehat{A_2}+\widehat{B_1}=90^0\)

tam giác ABO có \(\widehat{A_2}+\widehat{B_1}+\widehat{AOB}=180^0\) (tổng 3 góc trong 1 tam giác)

=>\(\widehat{AOB}=180^0-90^0=90^0\)

=> AF vuông góc vs OB

hay AF vuông góc vs EB (1)

có MN là đường trung bình của tam giác EBF(vì M là trug điểm EF, N là trung điểm BF) => MN // EB (2)

từ (1) và (2) => MN vuông góc vs AF

Đào Thị Huyền
3 tháng 11 2017 lúc 12:04

A B C D E F M N O 2 1 1