Cho tam giác ABC vuông tại A ,đường cao ah , kẻ hm vuông góc với ab tại M . CM BM = AB^2 : BC^2
Cho tam giác ABC vuông tại A, đường cao AH (H thuộc BC).
a, Biết AB=12cm, BC=20cm. Tính AC, AM, góc ABC.
b, Kẻ HM vuông góc AB tại M, HN vuông góc AC tại N. CM AN.AC=AC^2 - HC^2.
c, CM AH=MN, AM.MB+AN.NC=AH^2.
d, CM tan^3C=BM/CN.
b: \(AN\cdot AC=AH^2\)
\(AC^2-HC^2=AH^2\)
Do đó: \(AN\cdot AC=AC^2-HC^2\)
Cho tam giác ABC vuông tại A, đường cao AH (H thuộc BC).
a, Biết AB=12cm, BC=20cm. Tính AC, AM, góc ABC.
b, Kẻ HM vuông góc AB tại M, HN vuông góc AC tại N. CM AN.AC=AC^2 - HC^2.
c, CM AH=MN, AM.MB+AN.NC=AH^2.
d, CM tan^3C=BM/CN.
mk cần phần d ak, cảm ơn trước!
Cho tam giác ABC vuông tại A đường cao AH
a) AB=12cm,BC=20cm.Tính AC, AH, góc ABC(làm tròn đến độ)
B) kẻ HM vuông góc AB tại M, HN vuông góc AC tại N. CM: AN. NC=AC^2 -HC^2
c) CM: AH= MN, CM: AM. MB+AN. NC=AH^2
cho tam giác ABC vuông tại A có AB=9cm,AC=12cm,đường cao AH a/ chứng minh tam giác ABC đồng dạng với tam giác HBA . Tính BC,AH. b/ kẻ HM vuông góc với AB tại M. chứng minh: HM^2=MA*MB c/ MC cắt AH tại I , đường thẳng qua I và song song với AC cắt AB,BC lần lượt tại E,F . CM: IF=IE
MỌI NGƯỜI GIÚP MÌNH VỚI Ạ!!!
a: Xét ΔABC vuông tại A và ΔHBA vuông tại H có
góc B chung
=>ΔABC đồng dạng với ΔHBA
\(BC=\sqrt{9^2+12^2}=15\left(cm\right)\)
AH=9*12/15=7,2cm
b: ΔHAB vuông tại H có HM vuông góc AB
nên MH^2=MA*MB
cho tam giác ABC vuông tại A . Đường cao AH. HM vuông góc với AB tại M . HN vuông góc với AC tại N . Kẻ M đến N .biết PAMN=14(cm) ,PABC=28(cm).tính góc ABC
Kí hiệu \(P_{AMN}\) ở đây nghĩa là gì em nhỉ? Chắc là chu vi tam giác?
Tứ giác AMHN là hình chữ nhật (có 3 góc vuông) \(\Rightarrow\widehat{BAH}=\widehat{AMN}\)
Mà \(\widehat{BAH}=\widehat{ACB}\) (cùng phụ \(\widehat{ABC}\))
\(\Rightarrow\widehat{AMN}=\widehat{ACB}\)
\(\Rightarrow\Delta_vAMN\sim\Delta_VACB\) (g.g)
\(\Rightarrow\dfrac{AM}{AC}=\dfrac{AN}{AB}=\dfrac{MN}{BC}=\dfrac{AM+AN+MN}{AC+AB+BC}=\dfrac{14}{28}=\dfrac{1}{2}\)
Mà \(MN=AH\) (hai đường chéo hình chữ nhật)
\(\Rightarrow BC=2AH\)
Gọi K là trung điểm BC \(\Rightarrow BC=2AK\) (trung tuyến ứng với cạnh huyền bằng 1 nửa cạnh huyền)
\(\Rightarrow\) H trùng K \(\Rightarrow AH\) vừa là đường cao vừa là trung tuyến
\(\Rightarrow\Delta ABC\) vuông cân tại A
\(\Rightarrow\widehat{ABC}=45^0\)
Cho tam giác ABC vuông tại A, đường cao AH, kẻ HM vuông góc với AB tại M . HN vuông góc với AC tại N
a) Cm ; tứ giác AMHN là hình chữ nhật
b) Cm : tam giác ABH đồng dạng với tam giác CAH
c) Tính MN
cho tam giác ABC vuông tại A, ah vuong voi bc. Tia phân giác góc ABH cat ah tại M. Kẻ đườg vuông với BM tại B cat tia ah tai n
cm BC×HM=AB×AN
Bài 2: cho tam giác ABC vuông tại A.Có AH là đường cao.Tính BH,biết AH=2cm;BC=5cm.
Bài 3:Cho tam giác ABC vuông tại A.Có AH là đường cao từ H kẻ HM,HN vuông góc với AB,AC. CM : AM.AB=AN.AC Giúp mik với ạ chiều cần gấp lắm(chi tiết giúp mik a)
3:
ΔAHB vuông tại H có HM là đường cao
nên AM*AB=AH^2
ΔAHC vuông tại H có HN là đường cao
nên AN*AC=AH^2
=>AM*AB=AN*AC
Cho tam giác ABC vuông tại A ( AB< AC), đường cao AH ( H ∈ BC). Vẽ HM vuông góc với AB tại M, HN vuông góc với AC tại N.
a) Cho biết AB=6cm, AC= 8cm. Tính các độ dài BC, AH
b) Chứng minh AM.AB= AN.AC
c) Qua A kẻ đường thẳng vuông góc với MN cắt BC tại D. Chứng minh D là trung điểm của BC
Giúp t câu c với
a: BC=căn 6^2+8^2=10cm
AH=6*8/10=4,8cm
c:
Xét tứ giác ANHM có
góc ANH=góc AMH=góc MAN=90 độ
=>ANHM là hình chữ nhật
AD vuông góc MN
=>góc DAC+góc ANM=90 độ
=>góc DAC+góc AHM=90 độ
=>góc DAC+góc ABC=90 độ
=>góc DAC=góc DCA
=>DA=DC
góc DAC+góc DAB=90 độ
góc DCA+góc DBA=90 độ
mà góc DAC=góc DCA
nên góc DAB=góc DBA
=>DA=DB
=>DB=DC
=>D là trung điểm của BC