Tìm các số nguyên a để đa thức A(x) =\(x^3-4x^2+ax+30\)
chia hết cho đa thức B(x)= x-5
tìm các số nguyên a,b để đa thức A(x) =x^4-3x^3+ax+b chia hết cho đa thức B(x)=x^2-3x+4
tìm các số nguyên a và b để đa thức x^3 +ax^2+bx +3 chia hết cho đa thức x^2 +2x-1
Ta có (x3 + ax2 + bx + 3) : (x2 - 2x - 1) = x + a - 2 dư x(b - 2a + 5) + a + 1
Để (x3 + ax2 + bx + 3) \(⋮\) (x2 - 2x - 1)
=> x(b - 2a + 5) + a + 1 = 0 \(\forall x\)
=> \(\hept{\begin{cases}b-2a+5=0\\a+1=0\end{cases}}\Rightarrow\hept{\begin{cases}b-2a=-5\\a=-1\end{cases}}\Rightarrow\hept{\begin{cases}b=-7\\a=-1\end{cases}}\)
1) Cho đa thức A= x^4 - 2x^3 + 3x^2 - 5x + 10 và B= x^2 - x + 1. Tìm các đa thức Q và R sao cho A = BQ+R
2) Xác địng số dư khi chia đa thức f(x)= x^25 + x^20 + x^15 + x^30 + x^5 +1 cho
a. x-1
b. x+1
c. x^2-1
3) Tìm x nguyên sao cho giá trị biểu thức x^3 - 2x^2 + 2x chia hết cho x^2 - x +1
4) Xác định số a để
a.x^4 + ax^2 + 1 chia hết cho x^2 - 2x+1
b.2x^2 + ax + 5 chia x + 3 dư 41
tìm các số nguyên a và b để đa thức A(x)=x^3+ax^2+bx+2 chia chi đa thức B(x)=x+1 còn dư 5 và chia cho C(x)=x+2 dư 8
Tìm các số nguyên a và b để đa thức A(x)=x4-3x3+ax +b chia hết cho đa thức
B(x)=x2-3x+4
bạn trúc giang sai rồi -4 nhân -3x sao lại bằng -12x
Tìm giá trị nguyên của x để:
a) Đa thức 10x^2 - 7x - 5 chia hết cho đa thức 2x - 3
b) Đa thức x^3 - 4x^2 + 5x - 1 chia hết?
a) f(x) = 10x² - 7x - 5 = 10x² - 15x + 8x - 12 + 7 = 5x(2x-3) + 4(2x-3) + 7
f(x) chia hết cho 2x-3 khi và chỉ khi 7 chia hết cho 2x-3, vì 7 là số nguyên tố, nên chi có các trường hợp:
TH1: 2x-3 = -1 <=> x = 1
TH2: 2x-3 = 1 <=> x = 2
TH3: 2x-3 = -7 <=> x = -2
TH4: 2x-3 = 7 <=> x = 5
Vây có 4 giá trị nguyên của x là {-2, 1, 2, 5}
a) f(x) = 10x² - 7x - 5 = 10x² - 15x + 8x - 12 + 7 = 5x(2x-3) + 4(2x-3) + 7
f(x) chia hết cho 2x-3 khi và chỉ khi 7 chia hết cho 2x-3, vì 7 là số nguyên tố, nên chi có các trường hợp:
TH1: 2x-3 = -1 <=> x = 1
TH2: 2x-3 = 1 <=> x = 2
TH3: 2x-3 = -7 <=> x = -2
TH4: 2x-3 = 7 <=> x = 5
Vây có 4 giá trị nguyên của x là {-2, 1, 2, 5}
b) g(x) = x³ - 4x² + 5x - 1 = x³ - 3x² - x² + 3x + 2x - 6 + 5 = x²(x-3) - x(x-3) + 2(x-3) + 5
g(x) chia hết cho x-3 khi và chỉ khi 5 chia hết cho x-3 (5 là số nguyên tố nên chỉ xét các trường hợp)
TH1: x-3 = -5 <=> x = -2
TH2: x-3 = -1 <=> x = 2
TH3: x-3 = 1 <=> x = 4
TH4: x-3 = 5 <=> x = 8
Vậy có giá trị nguyên của x thỏa là {-1, 2, 4, 8}
a) f(x) = 10x² - 7x - 5 = 10x² - 15x + 8x - 12 + 7 = 5x(2x-3) + 4(2x-3) + 7
f(x) chia hết cho 2x-3 khi và chỉ khi 7 chia hết cho 2x-3, vì 7 là số nguyên tố, nên chi có các trường hợp:
TH1: 2x-3 = -1 <=> x = 1
TH2: 2x-3 = 1 <=> x = 2
TH3: 2x-3 = -7 <=> x = -2
TH4: 2x-3 = 7 <=> x = 5
Vây có 4 giá trị nguyên của x là {-2, 1, 2, 5}
b) g(x) = x³ - 4x² + 5x - 1 = x³ - 3x² - x² + 3x + 2x - 6 + 5 = x²(x-3) - x(x-3) + 2(x-3) + 5
g(x) chia hết cho x-3 khi và chỉ khi 5 chia hết cho x-3 (5 là số nguyên tố nên chỉ xét các trường hợp)
TH1: x-3 = -5 <=> x = -2
TH2: x-3 = -1 <=> x = 2
TH3: x-3 = 1 <=> x = 4
TH4: x-3 = 5 <=> x = 8
Vậy có giá trị nguyên của x thỏa là {-1, 2, 4, 8}
Nguồn ; lazi
a) Tìm a để đa thức x3-x2-x+a chia hết cho đa thức x+2
b) Tìm a và b để đa thức x3+ax2+2x+b chia hết cho x2+x+1
c) Tìm a và b để đa thức x3+4x2+ax+b chia hết cho đa thức x2+x+1
a: \(\Leftrightarrow x^3+2x^2-3x^2-6x+5x+10+a-10⋮x+2\)
=>a-10=0
=>a=10
b: \(\Leftrightarrow x^3+x^2+x+\left(a-1\right)x^2+\left(a-1\right)x+a-1+\left(2-a\right)x+b-a+1⋮x^2+x+1\)
=>2-a=0 và b-a+1=0
=>a=2; b=a-1=2-1=1
Bai 1:
a)Tìm n để đa thức x^4-x^3+6x^2-x+n chia hết cho đa thức x^2-x+5
b)Tìm n để đa thức 3x^3+10x^2-5+n chia hết cho đa thức 3x+1
c)Tìm tất cả các số nguyên n để 2n^2+n-7 chia hết cho n-2
ĐỂ x4 - x3 + 6x2 -x \(⋮x^2-x+5\)
\(\Rightarrow x-5=0\Rightarrow x=5\)
b , ta có : \(3x^3+10x^2-5⋮3x+1\)
\(\Rightarrow3x^3+x^2+9x^2+3x-3x-1-4⋮3x+1\)
\(\Rightarrow x\left(3x+1\right)+3x\left(3x+1\right)-\left(3x+1\right)-4⋮3x+1\)
mà : \(\left(3x+1\right)\left(4x-1\right)⋮3x+1\)
\(\Rightarrow4⋮3x+1\Rightarrow3x+1\inƯ\left(4\right)=\left\{\pm1;\pm2;\pm4\right\}\)
Nếu : 3x + 1 = 1 => x = 0 ( TM )
3x + 1 = -1 => x = -2/3 ( loại )
3x + 1 = 2 => x = 1/3 ( loại )
3x + 1 = -2 => x = -1 ( TM )
3x + 1 = 4 => x = 1 ( TM )
3x + 1 = -1 => x = -5/3 ( loại )
\(\Rightarrow x\in\left\{0;\pm1\right\}\)
kiều hoa câu b dòng thứ 3 phải là\(x^2\left(3x+1\right)\)chứ
a). Tìm a để đa thức \(2x^3-x^2+4x+a\) chia hết cho đa thức \(x+2\)
b). Tìm số nguyên n để \(2n^2-n+2\) chia hết cho \(2n+1\)
c). Tìm giá trị nhỏ nhất của đa thức M = \(2x^2-8x-10\)
b: \(\Leftrightarrow2n^2+n-2n-1+3⋮2n+1\)
\(\Leftrightarrow2n+1\in\left\{1;-1;3;-3\right\}\)
hay \(n\in\left\{0;-1;1;-2\right\}\)