tìm số dư của A=3+32+33+...+331 khi A:13
( Mog nhận đc câu trả lời từ mn )
1,Cho A = 1 + 3 + 32 + 33 + ...+ 350 + 351 + 352
a, Tính A ?
b, Tìm số dư khi chia cho 13
a,
`3A=3+3^3+3^3+...+3^{53}`
`3A-A=(3+3^3+3^3+...+3^{53})-(1+3+3^3+3^3+...+3^{52})`
`2A=3^{53}-1`
`A=(3^{53}-1)/2`
b,
`A=1+3+3^3+3^3+...+3^{52}`
`A=(1+3+3^2)+(3^3+3^4+3^5)+....+(3^{50}+3^{51}+3^{52})`
`A=(1+3+3^2)+3^3*(1+3+3^2)+....+3^{50}*(1+3+3^2)`
`A=(1+3+3^2)*(1+3^3+....+3^{50})`
`A=13*(1+3^3+....+3^{50})`
Do `13 \vdots 13 => A=13*(1+3^3+....+3^{50})\vdots 13 `
Vậy `A \vdots 13 `
Câu 17: (1 đ)
a) Tìm số nguyên x,y biết:
b) Cho M = 1+ 3+32 + 33 + 34 + …+ 399 + 3100 . Tìm số dư khi chia M cho 13, chia M cho 40 .
Bài 1:Cho B= 3 + 32 + 33 +... + 3100. Tìm số dư khi chia B cho 13
\(B=3+3^2+3^3+...+3^{100}\)
\(=3+\left(3^2+3^3+3^4\right)+...+\left(3^{98}+3^{99}+3^{100}\right)\)
\(=3+3^2\left(1+3+3^2\right)+...+3^{98}\left(1+3+3^2\right)\)
\(=3+3^2.13+...+3^{98}.13\)
\(=3+13\left(3^2+...+3^{98}\right)\)
\(\Rightarrow B⋮̸13\)
\(\Rightarrow B:13\) dư 3.
Các bạn giải nhanh giúp mình nhé. Mình cần gấp. Thanks!
Cho M =1+3+32+33+...+399+3100 Tìm số dư khi chia cho 13, và chia M cho 40.
Tìm số nguyên x,y biết: Cho M = 1+ 3+32 + 33 + 34 + …+ 399 + 3100 . Tìm số dư khi chia M cho 13, chia M cho 40 .
A=1+3+32+33+34+..........+32022.Tìm số dư khi chia A cho 13
cứu mik =__)
\(A=1+3+3^2+3^3+...+3^{2022}\)
\(=1+\left(3+3^2+3^3\right)+...+\left(3^{2020}+3^{2021}+3^{2022}\right)\)
\(=1+3\left(1+3+3^2\right)+3^4\left(1+3+3^2\right)+...+3^{2020}\left(1+3+3^2\right)\)
\(=1+13\left(3+3^4+...+3^{2020}\right)\)
=>A chia 13 dư 1
Cho M = 1+ 3+32 + 33 + 34 + …+ 399 + 3100 . Tìm số dư khi chia M cho 13, chia M cho 40
Bạn ko biết gõ số mũ à gõ thế này bố ai mà hiểu được
a) Cho A = 1 + 3 + 32 + 33 + ... + 32016 . Tìm số dư khi chia A cho 65 .
Giúp em với ạ
Lời giải:
$A=1+(3+3^2+3^3)+(3^4+3^5+3^6)+....+(3^{2014}+3^{2015}+3^{2016})$
$=1+3(1+3+3^2)+3^4(1+3+3^2)+...+3^{2014}(1+3+3^2)$
$=1+3.13+3^4.13+....+3^{2014}.13$
$=1+13(3+3^4+...+3^{2014})$
$\Rightarrow A-1\vdots 13(1)$
Mặt khác:
$A=1+(3+3^2+3^3+3^4)+....+(3^{2013}+3^{2014}+3^{2015}+3^{2016})$
$=1+3(1+3+3^2+3^3)+....+3^{2013}(1+3+3^2+3^3)$
$=1+(3+...+3^{2013})(1+3+3^2+3^3)$
$=1+40(3+....+3^{2013})$
$\Rightarrow A-1\vdots 5(2)$
Từ $(1); (2)$ mà $(5,13)=1$ nên $A-1\vdots (5.13)$ hay $A-1\vdots 65$
$\Rightarrow A$ chia $65$ dư $1$
Cho B = 3+32+33+34+…+3100 Tìm số dư trong phép chia B cho 13
B=3+3²+3³+..... +3¹00
B=3²+3³+3⁴+... 3¹00+3
B=3²(1+3+3²) +... +3 98(1+3+3²) +3
B=3²•13+... +3 98•13+3
=) 3²•13+3 98•13 chia hết cho 13
=) Số dư là 3