Rút gọn phân thức :
\(\frac{x^7-x^4}{x^6-1}\)
Đố: Đố em rút gọn được phân thức:
\(\frac{x^7+x^6+x^5+x^4+x^3+x^2+x+1}{x^2-1}\)
rút gọn phân thức
\(\frac{x^7+x^6+x^5+x^4+x^3+x^2+x+1}{x^2-1}\)
\(\frac{x^7+x^6+x^5+x^4+x^3+x^2+x+1}{x^2-1}\left(DK:x\ne-1;x\ne1\right)\)
\(=\frac{x^4\left(x^3+x^2+x+1\right)+\left(x^3+x^2+x+1\right)}{x^2-1}\)
\(=\frac{x^4\left[x\left(x^2+1\right)+x^2+1\right]+\left[x\left(x^2+1\right)+x^2+1\right]}{x^2-1}\)
\(=\frac{\left(x^4+1\right)\left(x+1\right)\left(x^2+1\right)}{\left(x-1\right)\left(x+1\right)}=\frac{\left(x^2+1\right)\left(x^4+1\right)}{x-1}\)
\(\frac{x^7+x^6+x^5+x^4+x^3+x^2+x+1}{x^2-1}\)
\(=\frac{x^6\left(x+1\right)+x^4\left(x+1\right)+x^2\left(x+1\right)+\left(x+1\right)}{\left(x-1\right)\left(x+1\right)}\)
\(=\frac{\left(x+1\right)\left(x^6+x^4+x^2\right)}{\left(x+1\right)\left(x-1\right)}\)
\(=\frac{x^6+x^4+x^2}{x+1}\)
\(=\frac{x^2\left(x^3+x^2+1\right)}{x+1}\)
Cho phân thức A=\(\frac{6x+12}{\left(x+2\right)\left(2x-6\right)}\)
a,Rút gọn phân thức
b,Tìm giá trị của x để phân thức có giá trị bằng (-2)
Câu 2: Rút gọn phân thức sau
A=(\(1-\frac{1}{x+1}\)) x (\(1-\frac{1}{x+2}\)) x (\(1-\frac{1}{x+3}\)) x (\(1-\frac{1}{x+4}\)) x (\(1-\frac{1}{x+5}\)) x (\(1-\frac{1}{x+6}\)) x (\(1-\frac{1}{x+7}\))
a,\(A=\frac{6x+12}{\left(x+2\right)\left(2x-6\right)}=\frac{6\left(x+2\right)}{2\left(x+2\right)\left(x-3\right)}=\frac{3}{x-3}\)
b, Giá trị của x để phân thức có giá trị bằng (-2) :
\(\frac{3}{x-3}=-2\Rightarrow x=1,5\)
Cau 2:
A= \(\frac{x}{x+1}.\frac{x+1}{x+2}.\frac{x+2}{x+3}.\frac{x+3}{x+4}.\frac{x+4}{x+5}.\frac{x+5}{x+6}.\frac{x+6}{x+7}\)
A= \(\frac{x}{x+7}\)
rút gọn phân thức :
Q= \(\frac{x^{10}-x^8-x^7+x^6+x^5+x^4-x^3-x^2+1}{x^{30}+x^{24}+x^{18}+x^{12}+x^6+1}\)
Rút gọn phân thức sau:
\(\frac{x^{10}-x^8-x^7+x^6+x^5+x^4-x^3-x^2+1}{x^{30}+x^{24}+x^{18}+x^{12}+x^6+1}\)
Rút gọn phân thức:
\(^{\frac{x^4-4x^2+3}{x^4+6x^2-7}}\)
\(=\frac{x^4-x^2-3x^2+3}{x^4-x^2+7x^2-7}=\frac{x^2\left(x^2-1\right)-3\left(x^2-1\right)}{x^2\left(x^2-1\right)+7\left(x^2-1\right)}=\frac{\left(x^2-3\right)\left(x^2-1\right)}{\left(x^2+7\right)\left(x^2-1\right)}=\frac{x^2-3}{x^2+7}\)
Rút gọn phân thức sau:
\(\frac{x^8+x+1}{x^7+x^2+1}\)
Cả tử và mẫu có nhân tử chung là x2 + x + 1 rút gọn cái đó đi là được
rút gọn phân thức sau:
x^7+x^6+x^5+x^4+x^3+x^2
x^2-1
BÀI 6
\(A=\dfrac{x+15}{x^2-9}-\dfrac{2}{x+3}\)
a) viết điều kiện xác định của biểu thức A
b)rút gọn phân thức
c)tìm giá trị của Akhi x=-1
BÀI 7
\(A=\dfrac{x+2}{x-2}+\dfrac{x-1}{x+2}\dfrac{x^2-4x}{4-x^2}\)với x2-4≠0
a)rút gọn biểu thức A
b)tính giá trị cua A khi x=4
a) ĐKXĐ:
\(\left\{{}\begin{matrix}x^2-9\ne0\\x+3\ne0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x\ne\pm3\\x\ne-3\end{matrix}\right.\Leftrightarrow x\ne\pm3\)
b) \(A=\dfrac{x+15}{x^2-9}-\dfrac{2}{x+3}\)
\(A=\dfrac{x+15}{\left(x+3\right)\left(x-3\right)}-\dfrac{2\left(x-3\right)}{\left(x+3\right)\left(x-3\right)}\)
\(A=\dfrac{x+15-2x+6}{\left(x+3\right)\left(x-3\right)}\)
\(A=\dfrac{21-x}{\left(x+3\right)\left(x-3\right)}\)
c) Thay x = - 1 vào A ta có:
\(A=\dfrac{21-\left(-1\right)}{\left(-1+3\right)\left(-1-3\right)}=\dfrac{21+1}{2\cdot-4}=\dfrac{22}{-8}=-\dfrac{11}{4}\)