Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
nhi lê
Xem chi tiết
Nguyễn Lê Phước Thịnh
17 tháng 10 2021 lúc 23:06

Bài 7:

a: \(A=x+\sqrt{x}\ge0\forall x\)

Dấu '=' xảy ra khi x=0

Thanh Thủy Nguyễn
Xem chi tiết
Toru
3 tháng 10 2023 lúc 21:38

\(a,P=\dfrac{\sqrt{x}}{\sqrt{x}-1}+\dfrac{3}{\sqrt{x}+1}-\dfrac{6\sqrt{x}-4}{x-1}\left(x\ge0;x\ne1\right)\)

\(=\dfrac{\sqrt{x}\left(\sqrt{x}+1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}+\dfrac{3\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}-\dfrac{6\sqrt{x}-4}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)

\(=\dfrac{x+\sqrt{x}+3\sqrt{x}-3-6\sqrt{x}+4}{\left(\sqrt{x}-1\right)\left(\sqrt{x} +1\right)}\)

\(=\dfrac{x-2\sqrt{x}+1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)

\(=\dfrac{\left(\sqrt{x}-1\right)^2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)

\(=\dfrac{\sqrt{x}-1}{\sqrt{x}+1}\)

\(---\)

\(b,P< \dfrac{1}{2}\Leftrightarrow\dfrac{\sqrt{x}-1}{\sqrt{x}+1}< \dfrac{1}{2}\)

\(\Leftrightarrow\dfrac{\sqrt{x}-1}{\sqrt{x}+1}-\dfrac{1}{2}< 0\)

\(\Leftrightarrow\dfrac{2\left(\sqrt{x}-1\right)}{2\left(\sqrt{x}+1\right)}-\dfrac{\sqrt{x}+1}{2\left(\sqrt{x}+1\right)}< 0\)

\(\Leftrightarrow\dfrac{2\sqrt{x}-2-\sqrt{x}-1}{2\left(\sqrt{x}+1\right)}< 0\)

\(\Leftrightarrow\dfrac{\sqrt{x}-3}{2\left(\sqrt{x}+1\right)}< 0\)

\(\Leftrightarrow\sqrt{x}-3< 0\left(vì.2\left(\sqrt{x}+1\right)>0\forall x\ge0\right)\)

\(\Leftrightarrow\sqrt{x}< 3\)

\(\Leftrightarrow x< 9\)

Kết hợp với điều kiện của \(x\), ta được:

\(0\le x< 9;x\ne1\) thì \(P< \dfrac{1}{2}\)

#\(Toru\)

Thanh Thủy Nguyễn
Xem chi tiết
Nguyễn Lê Phước Thịnh
29 tháng 11 2023 lúc 5:15

loading...

loading...

tofu
Xem chi tiết
Lấp La Lấp Lánh
17 tháng 10 2021 lúc 19:08

Bài 1:

1) \(\Rightarrow\left(x-2\right)\left(x+1\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x=2\\x=-1\end{matrix}\right.\)

2) \(\Rightarrow\left(x-3\right)\left(5x-1\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x=3\\x=\dfrac{1}{5}\end{matrix}\right.\)

3) \(\Rightarrow\left(4x-3\right)\left(7-12x\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x=\dfrac{3}{4}\\x=\dfrac{7}{12}\end{matrix}\right.\)

4) \(\Rightarrow x^3+8-x^3+25x=-17\)

\(\Rightarrow25x=-25\Rightarrow x=-1\)

5) \(\Rightarrow\left(3x-2\right)\left(3x+2\right)-2\left(3x-2\right)^2=0\)

\(\Rightarrow\left(3x-2\right)\left(3x+2-6x+4\right)=0\)

\(\Rightarrow\left(3x-2\right)\left(-3x+6\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x=\dfrac{2}{3}\\x=2\end{matrix}\right.\)

Nguyễn Lê Phước Thịnh
17 tháng 10 2021 lúc 21:43

Bài 3: 

c: \(x^2+7x+12=\left(x+3\right)\left(x+4\right)\)

d: \(x^3-7x-6\)

\(=x\left(x-1\right)\left(x+1\right)-6\left(x+1\right)\)

\(=\left(x+1\right)\left(x^2-x-6\right)\)

\(=\left(x+1\right)\left(x-3\right)\left(x+2\right)\)

Tuyet Nhung Tran
Xem chi tiết
vuongnhatbac
Xem chi tiết
vuongnhatbac
Xem chi tiết
vuongnhatbac
Xem chi tiết
Thanh Thủy Nguyễn
Xem chi tiết
Nguyễn Lê Phước Thịnh
11 tháng 12 2023 lúc 14:20

Bài 8:

a: Xét tứ giác AEHF có

\(\widehat{AEH}=\widehat{AFH}=\widehat{FAE}=90^0\)

=>AEHF là hình chữ nhật

=>AH=FE

Xét ΔAMN vuông tại A có AH là đường cao

nên \(AH^2=HM\cdot HN\)

=>\(FE^2=HM\cdot HN\)

b: Ta có: AEHF là hình chữ nhật

=>\(\widehat{AFE}=\widehat{AHE}\)

mà \(\widehat{AHE}=\widehat{M}\left(=90^0-\widehat{HAM}\right)\)

nên \(\widehat{AFE}=\widehat{M}\)

Ta có; ΔAMN vuông tại A

mà AD là đường trung tuyến

nên DN=DA

=>\(\widehat{DAN}=\widehat{DNA}\)

Ta có: \(\widehat{AFE}+\widehat{DAN}\)

\(=\widehat{DNA}+\widehat{M}\)

\(=90^0\)

=>AD\(\perp\)FE