Tìm x ∈ Z, biết :
( x2 + 7 )( x2 - 7 ) < 0
Tìm x ∈ Z ,biết :
( x2 + 7 )( x2 - 7 ) < 0
\(\left(x^2+7\right)\left(x^2-7\right)< 0\)
mà \(x^2+7>=7>0\forall x\)
nên \(x^2-7< 0\)
=>\(x^2< 7\)
=>\(-\sqrt{7}< x< \sqrt{7}\)
mà x nguyên
nên \(x\in\left\{-2;-1;0;1;2\right\}\)
Tìm x, y thuộc Z biết:
a) x ( x + 6 ) = 0
b) ( x − 3 ) . ( y + 7 ) = 0
c) ( x − 2 ) ( x 2 + 2 ) = 0
a) x ( x + 6 ) = 0 ⇔ x = 0 x + 6 = 0 ⇔ x = 0 x = − 6
Vậy x = 0 hoặc x = - 6
b) ( x − 3 ) . ( y + 7 ) = 0 ⇔ x − 3 = 0 y + 7 = 0 ⇔ x = 3 y = − 7
Vậy x = 3 hoặc x = -7
c) ( x − 2 ) ( x 2 + 2 ) = 0 ⇔ x − 2 = 0 x 2 + 2 = 0 ⇔ x = 2 x 2 = − 2 ( L )
Vậy x = 2
Tìm x thuộc Z biết: a) x (x - 7) = 0; b) x (x + 11) = 0; c) (x + 8) (x - 12) = 0; d) (x - 3) ( x 2 + 3) = 0;
c) C = x(y2 +z2)+y(z2 +x2)+z(x2 +y2)+2xyz.
d) D = x3(y−z)+y3(z−x)+z3(x−y).
e) E = (x+y)(x2 −y2)+(y+z)(y2 −z2)+(z+x)(z2 −x2).
b) x2 +2x−24 = 0.
d) 3x(x+4)−x2 −4x = 0.
f) (x−1)(x−3)(x+5)(x+7)−297 = 0.
(2x−1)2 −(x+3)2 = 0.
c) x3 −x2 +x+3 = 0.
e) (x2 +x+1)(x2 +x)−2 = 0.
a) A = x2(y−2z)+y2(z−x)+2z2(x−y)+xyz.
b) B = x(y3 +z3)+y(z3 +x3)+z(x3 +y3)+xyz(x+y+z). c) C = x(y2 −z2)−y(z2 −x2)+z(x2 −y2).
Đề bài yêu cầu gì vậy em.
Tìm x,y∈Z,biết:
Tìm x,y∈Z,biết:
18*) (x-6)(3x-9)>0
19*) -2x(x+5)<0
20*) (2x-1)(6-x) >0
21*) (2-x)(x+7) <0
22*) |x+3|≤2
23*) (x + 3)(x2 + 2) > 0
24*) (x - 2)(-9 - x2 ) < 0
25*) |x + 25| + |5 - y|=0
26*) |x - 40 | + |x - y + 10 | lớn hơn hoặc bằng 0
27*) (x – 3)(3y + 2) = 7
28*) 5xy – 5x + y = 5
\((x-6)(3x-9)>0\)
TH1:
\(\orbr{\begin{cases}x-6< 0\\3x-9< 0\end{cases}}\)\(\Rightarrow\orbr{\begin{cases}x< 6\\x< 3\end{cases}}\)\(\Rightarrow x< 3\)
TH2:
\(\orbr{\begin{cases}x-6>0\\3x-9>0\end{cases}}\)\(\Rightarrow\orbr{\begin{cases}x>6\\x>3\end{cases}}\)\(\Rightarrow x>6\)
Vậy \(x< 3\) hoặc \(x>6\)thì \((x-6)(3x-9)>0\)
Học tốt!
20.
\((2x-1)(6-x)>0\)
TH1:
\(\orbr{\begin{cases}2x-1>0\\6-x>0\end{cases}\Rightarrow\orbr{\begin{cases}x< \frac{1}{2}\\x< 6\end{cases}}\Rightarrow x< 6}\)
TH2
\(\orbr{\begin{cases}2x-1< 0\\6-x< 0\end{cases}\Rightarrow\orbr{\begin{cases}x>\frac{1}{2}\\x>6\end{cases}}\Rightarrow x>\frac{1}{2}}\)
Vậy \(x< 6\)hoặc \(x>\frac{1}{2}\)thì \((2x-1)(6-x)>0\)
21.
\((2-x)(x+7)< 0\)
TH1.
\(\orbr{\begin{cases}2-x>0\\x+7< 0\end{cases}\Rightarrow\orbr{\begin{cases}x< 2\\x>-7\end{cases}}\Rightarrow-7< x< 2}\)
TH2.
\(\orbr{\begin{cases}2-x< 0\\x+7>0\end{cases}\Rightarrow\orbr{\begin{cases}x>2\\x< -7\end{cases}}\Rightarrow2< x< -7}\)(vô lí)
Vậy \(-7< x< 2\) thì \((2-x)(x+7)< 0\)
Bài 1 : Tìm x thuộc Z, sao cho :
a) ( x - 1 ) ( x - 3 ) > = 0
b) ( x - 5 ) ( x - 7 ) < 0
c) ( x2 - 1 ) ( x2 - 4 ) < 0
Tìm x ϵ Q, biết:
a) x2 - 2 = 0
b) x2 + \(\dfrac{7}{4}\) = \(\dfrac{23}{4}\)
c) (x - 1)2 = 0
a) x² - 2 = 0
x² = 2
x = -√2 (loại) hoặc x = √2 (loại)
Vậy không tìm được x Q thỏa mãn đề bài
b) x² + 7/4 = 23/4
x² = 23/4 - 7/4
x² = 4
x = 2 (nhận) hoặc x = -2 (nhận)
Vậy x = -2; x = 2
c) (x - 1)² = 0
x - 1 = 0
x = 1 (nhận)
Vậy x = 1
a) x2 - 2 = 0
x2 = 2
x = √2 hoặc -√2 (loại) (x ϵ Q)
Vậy x ϵ rỗng
b) x2 + 7/4 =23/4
x2 = 23/4 - 7/4
x2 = 16/4 = 4
x2 = 4 = (-2)2 = 22
x2 = (-2)2
x = -2 (Nhận)
x2 = 2
x = 2 (Nhận)
Vậy x ϵ ( 2 , -2 )
c) (x-1)2 = 0
x-1 = 0
x = 1
Vậy x = 1
Tìm x,y\(\in\)Z thoả mãn đẳng thức: x2-3y2+2xy+2x-4y-7=0
x2 - 3y2 + 2xy + 2x - 4y - 7 = 0
<=> 4.(x2 - 3y2 + 2xy + 2x - 4y - 7) = 0
<=> 4x2 - 12y2 + 8xy + 8x - 16y - 28 = 0
<=> (4x2 + 8xy + 4y2) + (8x + 8y) + 4 - 16y2 - 24y - 32 = 0
<=> (2x + 2y)2 + 4(2x + 2y) + 4 - (16y2 + 24y + 9) = 23
<=> (2x + 2y + 2)2 - (4y + 3)2 = 23
<=> (2x + 6y + 5)(2x - 2y - 1) = 23
Vì \(x;y\inℤ\Rightarrow2x+6y+5;2x-2y-1\inℤ\)
Lập bảng :
2x + 6y + 5 | 1 | 23 | -1 | -23 |
2x - 2y - 1 | 23 | 1 | -23 | -1 |
x | 17/2(loại) | 3 | -9 | -7/2(loại) |
y | 2 | 2 |
Vậy (x;y) = (3;2) ; (-9;2)
Tìm x, biết
2(x+7) - x2 - 7x = 0
\(PT\Leftrightarrow2\left(x+7\right)-x\left(x+7\right)=0\)
\(\Leftrightarrow\left(x+7\right)\left(2-x\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x+7=0\\2-x=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-7\\x=2\end{matrix}\right.\)
Vậy: \(S=\left\{-7;2\right\}\)