Những câu hỏi liên quan
Nguyễn Minh Nhật
Xem chi tiết
Akai Haruma
22 tháng 6 2023 lúc 0:06

Lời giải:

ĐK: $3m+1\neq 0$

Gọi $A,B$ lần lượt là giao điểm của $(d)$ với $Ox,Oy$

Vì $A\in Ox$ nên $y_A=0$

$y_A=(3m+1)x_A-6m-1=0$

$\Rightarrow x_A=\frac{6m+1}{3m+1}$

Vậy $A(\frac{6m+1}{3m+1},0)$

Tương tự: $B(0, -6m-1)$

Gọi $h$ là khoảng cách từ $O$ đến $(d)$

Khi đó, theo hệ thức lượng trong tam giác vuông ta có:

$\frac{1}{h^2}=\frac{1}{OA^2}+\frac{1}{OB^2}$

$=\frac{1}{|x_A|^2}+\frac{1}{|y_B|^2}$

$=\frac{(3m+1)^2}{(6m+1)^2}+\frac{1}{(6m+1)^2}$
$=\frac{(3m+1)^2+1}{(6m+1)^2}$

Để $h$ max thì $\frac{1}{h^2}$ min 

Hay $\frac{(3m+1)^2+1}{(6m+1)^2}$ min

Áp dụng BĐT Bunhiacopxky:

$[(3m+1)^2+1][2^2+(-1)^2]\geq [2(3m+1)+(-1)]^2=(6m+1)^2$
$\Rightarrow 5[(3m+1)^2+1]\geq (6m+1)^2$

$\Rightarrow \frac{1}{h^2}\geq \frac{1}{5}$

Giá trị này đạt tại $\frac{3m+1}{2}=\frac{1}{-1}$

$\Leftrightarrow m=-1$

Thành Đạt
Xem chi tiết
....
Xem chi tiết
Cấn Minh Vy
Xem chi tiết
le sourire
9 tháng 12 2020 lúc 20:47

Giải thích các bước giải:

Gọi HH là hình chiếu của OO trên đồ thị hàm số y=(1−3m)x+my=(1−3m)x+m

 Ta có:

y=(1−3m)x+m=m(1−3x)+xy=(1−3m)x+m=m(1−3x)+x có đồ thị là đường (d)(d)

Nhận thấy: Đồ thị hàm số trên luôn đi qua điểm A(13;13)A(13;13) cố định với mọi mm

Lại có:

OH≤OAOH≤OA (Quan hệ đường xiên - đường vuông góc)

⇒MaxOH=OA⇒MaxOH=OA

Mà: OA=√(13−0)2+(13−0)2=√23OA=(13−0)2+(13−0)2=23

⇒MaxOH=√23⇒MaxOH=23

Dấu bằng xảy ra

⇔H≡A⇔OA⊥(d)⇔H≡A⇔OA⊥(d)

Mà đường OAOA là đồ thị hàm số y=xy=x nên 

OA⊥(d)⇔(1−3m).1=−1⇔1−3m=−1⇔m=23OA⊥(d)⇔(1−3m).1=−1⇔1−3m=−1⇔m=23

Vậy m=23m=23

imagerotate

Khách vãng lai đã xóa
Đặng  Mai  Hương
Xem chi tiết
Nguyễn Hoàng Minh
15 tháng 12 2021 lúc 13:50

\(a,\) Gọi điểm cố định (d) luôn đi qua là \(A\left(x_0;y_0\right)\)

\(\Leftrightarrow y_0=\left(m-2\right)x_0+2\Leftrightarrow mx_0-2x_0+2-y_0=0\\ \Leftrightarrow\left\{{}\begin{matrix}x_0=0\\2-2x_0-y_0=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x_0=0\\y_0=2\end{matrix}\right.\Leftrightarrow A\left(0;2\right)\)

Vậy \(A\left(0;2\right)\) là điểm cố định mà (d) lun đi qua

\(b,\) PT giao Ox,Oy: \(y=0\Leftrightarrow x=\dfrac{2}{2-m}\Leftrightarrow B\left(\dfrac{2}{2-m};0\right)\Leftrightarrow OB=\dfrac{2}{\left|m-2\right|}\\ x=0\Leftrightarrow y=2\Leftrightarrow C\left(0;2\right)\Leftrightarrow OC=2\)

Gọi H là chân đường cao từ O đến (d) \(\Leftrightarrow OH=1\)

Áp dụng HTL: \(\dfrac{1}{OH^2}=1=\dfrac{1}{OB^2}+\dfrac{1}{OC^2}=\dfrac{\left(m-2\right)^2}{4}+\dfrac{1}{4}\)

\(\Leftrightarrow m^2-4m+4+1=4\\ \Leftrightarrow m^2-4m+1=0\\ \Leftrightarrow\left[{}\begin{matrix}m=2+\sqrt{3}\\m=2-\sqrt{3}\end{matrix}\right.\)

\(c,\) Áp dụng HTL: \(\dfrac{1}{OH^2}=\dfrac{1}{OC^2}+\dfrac{1}{OB^2}=\dfrac{\left(m-2\right)^2}{4}+\dfrac{1}{4}\)

Đặt \(OH^2=t\)

\(\Leftrightarrow\dfrac{1}{t}=\dfrac{m^2-4m+5}{4}\Leftrightarrow t=\dfrac{4}{\left(m-2\right)^2+1}\le\dfrac{4}{0+1}=4\\ \Leftrightarrow OH\le2\\ OH_{max}=2\Leftrightarrow m=2\)

Đăng Quân Nguyễn
Xem chi tiết
Nguyễn Hoàng Minh
2 tháng 1 2022 lúc 22:09

PT giao Ox: \(y=0\Leftrightarrow x=\dfrac{m}{3m-1}\Leftrightarrow A\left(\dfrac{m}{3m-1};0\right)\Leftrightarrow OA=\left|\dfrac{m}{3m-1}\right|\)

PT giao Oy: \(x=0\Leftrightarrow y=m\Leftrightarrow B\left(0;m\right)\Leftrightarrow OB=\left|m\right|\)

Kẻ \(OH\bot\left(d\right)\Rightarrow OH=\dfrac{1}{5}\)

Áp dụng HTL, ta có: \(\dfrac{1}{OH^2}=\dfrac{1}{OA^2}+\dfrac{1}{OB^2}\)

\(\Rightarrow\dfrac{\left(3m-1\right)^2}{m^2}+\dfrac{1}{m^2}=25\\ \Rightarrow\dfrac{9m^2-6m+2}{m^2}=25\\ \Rightarrow25m^2=9m^2-6m+2\\ \Rightarrow8m^2+3m-1=0\\ \Rightarrow\left[{}\begin{matrix}m=\dfrac{-3+\sqrt{41}}{2}\\m=\dfrac{-3-\sqrt{41}}{2}\end{matrix}\right.\)

ank viet
Xem chi tiết
ank viet
Xem chi tiết
Dương Ánh Ngọc
25 tháng 1 2020 lúc 16:08

Bạn viết sai rồi, đường thẳng y-mx+2 =0 hay y=mx+2 vậy bạn?

Khách vãng lai đã xóa
KHANH QUYNH MAI PHAM
Xem chi tiết