Những câu hỏi liên quan
N.T.M.D
Xem chi tiết
Xyz OLM
13 tháng 5 2021 lúc 16:25

a3 + b3 \(\ge\frac{1}{4}\)

<=> (a + b)(a2 - ab + b2\(\ge\frac{1}{4}\)

<=> a2 - ab + b2 \(\ge\frac{1}{4}\)

<=> 4a2 - 4ab + 4b2 \(\ge1\)

<=> 4a2 - 4a(1 - a) + 4(1 - a)2 \(\ge\)1

<=> 8a2 - 4a + 4(a2 - 2a + 1) \(\ge\)1

<=> 12a2 - 12a + 3 \(\ge\)0

<=> 3(4a2 - 4a + 1) \(\ge0\)

<=> (2a - 1)2 \(\ge\)0 (đúng)

Dấu "=" xảy ra <=> \(a=b=\frac{1}{2}\)

b) Vì \(a^3+b^3\ge\frac{1}{4}\Rightarrow\frac{1}{a^3+b^3}\ge4\)

Khi đó \(\frac{1}{a^3+b^3}+\frac{3}{ab}\ge16\)

<=> \(\frac{3}{ab}\ge12\)

<=> ab \(\ge\frac{1}{4}\)

<=> 4ab \(\ge1\)

<=> 4a(1 - a) \(\ge1\)

<=> (2a - 1)2 \(\ge0\)(đúng)

=> ĐPCM

Bình luận (0)
 Khách vãng lai đã xóa
N.T.M.D
Xem chi tiết
Nguyễn Việt Lâm
6 tháng 5 2021 lúc 17:18

Ta chứng minh BĐT sau với các số dương:

\(\dfrac{1}{x}+\dfrac{1}{y}\ge\dfrac{4}{x+y}\)

Thật vậy, BĐT tương đương: \(\dfrac{x+y}{xy}\ge\dfrac{4}{x+y}\Leftrightarrow\left(x+y\right)^2\ge4xy\)

\(\Leftrightarrow x^2-2xy+y^2\ge0\Leftrightarrow\left(x-y\right)^2\ge0\) (luôn đúng)

Áp dụng:

\(\dfrac{1}{a}+\dfrac{1}{b}\ge\dfrac{4}{a+b}\) ; \(\dfrac{1}{b}+\dfrac{1}{c}\ge\dfrac{4}{b+c}\) ; \(\dfrac{1}{c}+\dfrac{1}{a}\ge\dfrac{4}{c+a}\)

Cộng vế với vế:

\(2\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)\ge\dfrac{4}{a+b}+\dfrac{4}{b+c}+\dfrac{4}{c+a}\)

\(\Leftrightarrow\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\ge\dfrac{2}{a+b}+\dfrac{2}{b+c}+\dfrac{2}{c+a}\)

Bình luận (0)
Nguyễn Việt Lâm
6 tháng 5 2021 lúc 17:20

b.

Ta có:

\(\dfrac{1}{a}+\dfrac{1}{b}\ge\dfrac{4}{a+b}\Rightarrow\dfrac{3}{a}+\dfrac{3}{b}\ge\dfrac{12}{a+b}\) (1)

\(\dfrac{1}{b}+\dfrac{1}{c}\ge\dfrac{4}{b+c}\Rightarrow\dfrac{2}{b}+\dfrac{2}{c}\ge\dfrac{8}{b+c}\) (2)

\(\dfrac{1}{c}+\dfrac{1}{a}\ge\dfrac{4}{c+a}\) (3)

Cộng vế với vế (1); (2) và (3):

\(\dfrac{4}{a}+\dfrac{5}{b}+\dfrac{3}{c}\ge4\left(\dfrac{3}{a+b}+\dfrac{2}{b+c}+\dfrac{1}{c+a}\right)\) (đpcm)

Dấu "=" xảy ra khi \(a=b=c\)

Bình luận (0)
N.T.M.D
Xem chi tiết
vũ tiền châu
Xem chi tiết
Dung Đặng Phương
Xem chi tiết
Phùng Minh Quân
25 tháng 1 2020 lúc 21:05

1) \(\Sigma\frac{a}{b^3+ab}=\Sigma\left(\frac{1}{b}-\frac{b}{a+b^2}\right)\ge\Sigma\frac{1}{a}-\Sigma\frac{1}{2\sqrt{a}}=\Sigma\left(\frac{1}{a}-\frac{2}{\sqrt{a}}+1\right)+\Sigma\frac{3}{2\sqrt{a}}-3\)

\(\ge\Sigma\left(\frac{1}{\sqrt{a}}-1\right)^2+\frac{27}{2\left(\sqrt{a}+\sqrt{b}+\sqrt{c}\right)}-3\ge\frac{27}{2\sqrt{3\left(a+b+c\right)}}-3=\frac{3}{2}\)

Bình luận (0)
 Khách vãng lai đã xóa
Nyatmax
25 tháng 1 2020 lúc 22:23

2.

Vỉ \(ab+bc+ca+abc=4\)thi luon ton tai \(a=\frac{2x}{y+z};b=\frac{2y}{z+x};c=\frac{2z}{x+y}\)

\(\Rightarrow VT=2\Sigma_{cyc}\sqrt{\frac{ab}{\left(b+c\right)\left(c+a\right)}}\le2\Sigma_{cyc}\frac{\frac{b}{b+c}+\frac{a}{c+a}}{2}=3\)

Bình luận (0)
 Khách vãng lai đã xóa
Nyatmax
26 tháng 1 2020 lúc 8:21

Cho o dong 2 la x,y,z nhe,ghi nham

Bình luận (0)
 Khách vãng lai đã xóa
Lê Minh Đức
Xem chi tiết
Lầy Văn Lội
10 tháng 7 2017 lúc 11:19

Áp dụng BĐT cauchy-schwarz :

\(VT=\frac{a^4}{ab+ac+ad}+\frac{b^4}{ab+bc+bd}+\frac{c^4}{cd+ac+bc}+\frac{d^4}{ad+bd+cd}\)

\(\ge\frac{\left(a^2+b^2+c^2+d^2\right)^2}{2\left(ab+ac+ad+bc+bd+cd\right)}\)

Mà \(3\left(a^2+b^2+c^2+d^2\right)\ge2\left(ab+ac+ad+bc+bd+cd\right)\)( dễ dàng chứng minh nó bằng AM-GM)

nên \(VT\ge\frac{a^2+b^2+c^2+d^2}{3}\)

Áp dụng BĐT AM-GM: \(a^2+b^2\ge2ab;b^2+c^2\ge2bc;c^2+d^2\ge2cd;d^2+a^2\ge2ad\)

\(\Rightarrow a^2+b^2+c^2+d^2\ge ab+bc+cd+da=1\)

do đó \(VT\ge\frac{1}{3}\)

Dấu''='' xảy ra khi \(a=b=c=d=\frac{1}{2}\)

Bình luận (0)
Prissy
Xem chi tiết
zZz Cool Kid_new zZz
15 tháng 9 2020 lúc 17:30

Ta dễ có:\(\frac{1}{a^2+1}=\frac{a^2+1-a^2}{a^2+1}=1-\frac{a^2}{a^2+1}\ge1-\frac{a^2}{2a}=1-\frac{a}{2}\)

Một cách tương tự \(\frac{1}{b^2+1}\ge1-\frac{b}{2};\frac{1}{c^2+1}\ge1-\frac{c}{2}\)

Khi đó: \(\frac{1}{a^2+1}+\frac{1}{b^2+1}+\frac{1}{c^2+1}\ge3-\frac{a+b+c}{2}\)

Cần chứng minh: \(3-\frac{a+b+c}{2}\ge\frac{3}{2}\Leftrightarrow a+b+c\le3\)

Hình như có gì đó sai sai @@

Bình luận (0)
 Khách vãng lai đã xóa
zZz Cool Kid_new zZz
15 tháng 9 2020 lúc 17:41

Lời giải kia sai rồi :V Làm cách khác:

Ta có:\(\frac{1}{a^2+1}=\frac{a^2+1-a^2}{a^2+1}=1-\frac{a^2}{a^2+1}\)

Tương tự rồi ta được:

\(LHS=3-\left(\frac{a^2}{a^2+1}+\frac{b^2}{b^2+1}+\frac{c^2}{c^2+1}\right)\)

Bất đẳng thức cần chứng minh tương đương với: 

\(\frac{a^2}{a^2+1}+\frac{b^2}{b^2+1}+\frac{c^2}{c^2+1}\le\frac{3}{2}\)

\(\Leftrightarrow\frac{a^2}{3a^2+3}+\frac{b^2}{3b^2+3}+\frac{c^2}{3c^2+3}\le\frac{1}{2}\)

Ta dễ có được:

\(\frac{4a^2}{3a^2+3}=\frac{4a^2}{3a^2+ab+bc+ca}=\frac{\left(a+a\right)^2}{a\left(a+b+c\right)+2a^2+bc}\le\frac{a^2}{a\left(a+b+c\right)}+\frac{a^2}{2a^2+bc}\)

Tương tự:

\(\frac{4b^2}{3b^2+3}\le\frac{b^2}{b\left(a+b+c\right)}+\frac{b^2}{2b^2+ca};\frac{4c^2}{3c^2+3}\le\frac{c^2}{c\left(a+b+c\right)}+\frac{c^2}{2c^2+ab}\)

\(\Rightarrow LHS\le\frac{1}{4}\left(\frac{a}{a+b+c}+\frac{b}{a+b+c}+\frac{c}{a+b+c}+\Sigma\frac{a^2}{2a^2+bc}\right)=\frac{1}{4}\left(1+\Sigma\frac{a^2}{2a^2+bc}\right)\)

Một cách khác ta dễ có được: \(\Sigma\frac{a^2}{2a^2+bc}\le1\)

Done !

Bình luận (0)
 Khách vãng lai đã xóa
Đặng Kim Anh
Xem chi tiết
Kudo Shinichi
3 tháng 2 2020 lúc 9:55

Áp dụng bất đẳng thức Cauchy - Schwarz ta có :

\(\left(1^2+1^2+1^2\right)\left(a^2+b^2+c^2\right)\ge\left(a+b+c\right)^2=9^2\)

\(\Rightarrow3\left(a^2+b^2+c^2\right)\ge9\Rightarrow a^2+b^2+c^2\ge3\)

Lại có : \(a^2+b^2+c^2\ge ab+bc+ac\forall a,b,c\)

\(\Rightarrow3\ge ab+bc+ac\Rightarrow ab+bc+ac\le3\)

Bất đẳng thức ban đầu tương đương với :

\(\frac{a^2}{a\left(b^2+1\right)}+\frac{b^2}{b\left(c^2+1\right)}+\frac{c^2}{c\left(a^2+1\right)}\ge\frac{3}{2}\)

Áp dụng bất đẳng thức Cauchy - Schwarz dạng Engel ta có :
\(\frac{a^2}{a\left(b^2+1\right)}+\frac{b^2}{b\left(c^2+1\right)}+\frac{c^2}{c\left(a^2+1\right)}\)

\(\ge\frac{\left(a+b+c\right)^2}{a\left(b^2+1\right)+b\left(c^2+1\right)+c\left(a^2+1\right)}\)

Áp dụng BĐT AM - GM ta có :
\(\hept{\begin{cases}a\left(b^2+1\right)\ge a.2\sqrt{b^2}=2ba\\b\left(c^2+1\right)\ge b.2\sqrt{c^2}=2cb\\c\left(a^2+1\right)\ge c.2\sqrt{a^2}=2ac\end{cases}}\)

\(\Rightarrow\frac{a^2}{a\left(b^2+1\right)}+\frac{b^2}{b\left(c^2+1\right)}+\frac{c^2}{c\left(a^2+1\right)}\ge\frac{\left(a+b+c\right)^2}{2\left(ab+bc+ca\right)}\)

Mà \(ab+bc+ca\le3\Rightarrow\frac{\left(a+b+c\right)^2}{2\left(ab+bc+ca\right)}\ge\frac{\left(a+b+c\right)^2}{2.3}=\frac{9}{6}=\frac{3}{2}\)

Đẳng thức xảy ra khi \(a=b=c=1\)

Chúc bạn học tốt !!!

Bình luận (0)
 Khách vãng lai đã xóa
Jennie Kim
3 tháng 2 2020 lúc 9:55

Ta không thể sử dụng trực tiếp bất đẳng thức AM−GM với mẫu số vì bất đẳng thức sẽ đổi chiều

\(\frac{a}{1+b^2}+\frac{b}{1+c^2}+\frac{c}{1+a^2}\)\(\le\)\(\frac{a}{2b}+\frac{b}{2c}+\frac{c}{2a}\ge\frac{3}{2}\)
Tuy nhiên, rất may mắn ta có thể dùng lại bất đẳng thức đó theo cách khác

\(\frac{a}{1+b^2}=a-\frac{ab^2}{1+b^2}\ge a-\frac{ab^2}{2b}=a-\frac{ab}{2}\)
Ta đã sử dụng bất đẳng thức AM−GMcho 2 số 1+b2≥2b ở dưới mẫu nhưng lại có được một bất đẳng thức thuận chiều? Sự may mắn ở đây là một cách dùng ngược bất đẳng thức AM−GMAM−GM, một kĩ thuật rất ấn tượng và bất ngờ. Nếu không sử dụng phương pháp này thì bất đẳng thức trên sẽ rất khó và dài.

Từ bất đẳng thức trên, xây dựng 2 bất đẳng thức đương tự với b,cb,c rồi cộng cả 3 bất đẳng thức lại suy ra:

\(\frac{a}{1+b^2}+\frac{b}{1+c^2}+\frac{c}{1+a^2}=a+b+c-\frac{ab+bc+ac}{2}\ge\frac{3}{2}\)
vì ta có ab+bc+ac≤3. Đẳng thức xảy ra khi a=b=c=1.
Với cách làm trên có thể xây dựng bất đẳng thức tương tự với 4 số.

Chúc bạn học tốt!!! k mình nha=))

Bình luận (0)
 Khách vãng lai đã xóa
Pain Thiên Đạo
Xem chi tiết