cho x =\(\frac{a}{b}\),y =\(\frac{c}{d}\)( y khác 0 ) là 2 số hữu tỉ. Khi nào thì \(\frac{x}{y}\)là 1 số nguyên
Bài 1: Tính
\(\frac{25,79}{6}-\frac{1,79}{6}\)
Bài 2: Cho số hữu tỉ x \(\ne\) 0. Khi nào \(\frac{1}{x}\) là một số nguyên ?
Bài 3: Cho \(x=\frac{a}{b},y=\frac{c}{d}\) (y \(\ne\) 0) là hai số hữu tỉ. Khi nào thương \(\frac{x}{y}\) một số nguyên ?
Bài 1
\(\frac{25,79}{6}-\frac{1,79}{6}\)
\(=\frac{24}{6}=4\)
Bài 2
Khi \(x=1\)hoặc \(x=-1\)
Bài 3
ko bt :))
Bài 1:
\(\frac{25,79}{6}-\frac{1,79}{6}=\frac{24}{6}=4\)
Rất vui vì giúp đc bạn <3
1. Cho số hữu tỉ \(y=\frac{2a-1}{-3}\). Với giá trị nào của a thì:
a) y là số dương
b) y là số âm
c) y không là số dương cũng không phải là số âm
2. Cho số hữu tỉ \(x=\frac{a-5}{a}\) (a khác 0). Với giá trị nguyên nào của a thì x là số nguyên?
3. Cho 6 số nguyên dương a < b < c < d < m < n. Chứng minh rằng:
\(\frac{a+c+m}{a+b+c+d+m+n}\) < \(\frac{1}{2}\)
cho hai số hữu tỉ x và y mà \(x=\frac{a}{b}\); \(y=\frac{c}{d}\) ( y khác 0 ). Khi nào \(\frac{x}{y}\)là số nguyên
\(\frac{x}{y}=\frac{\frac{a}{b}}{\frac{c}{d}}=\frac{a}{b}\cdot\frac{d}{c}=\frac{ad}{bc}\)
x.y nguyên khi
ad chia hết cho bc => a.d là bội của bc
1.Tìm 2 số hữu tỉ x và y sao cho:
a) x + y = xy = x : y (y khác 0)
b) x - y = xy = x: y (y khác 0)
c) x + y = xy = x - y = x : y (y khác 0)
d) 2( x + y) = x - y = x : y (y khác 0)
2. Cho 100 số hữu tỉ, trong đó bất kỳ 3 số nào cũng có tích là một số âm.
a) CM: tích của 100 số đó là 1 số dương.
b) Kết luận cả 100 số đó đều là âm được ko?
3.Cho 2 số hữu tỉ có tổng bằng \(\frac{4}{33}\)và tích của chúng bằng \(\frac{-4}{11}\). Tính tổng các số nghịch đảo của 2 số đó.
4. Viết 1999 số hữu tỉ trên một đường tròn, trong đó tích hai số cạnh nhau luôn bằng \(\frac{1}{9}\). Tìm các số đó.
Cho x, y là các số hữu tỉ khác 0 và x + y khác 0. Chứng minh rằng biểu thức \(A=\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{\left(x+y\right)^2}\) viết được dưới dạng bình phương của một số hữu tỉ.
Tham khảo: Câu hỏi của Nguyen Nhat Minh - Toán lớp 8 - Học toán với OnlineMath
Nếu olm không hiện link xanh đậm,hãy nhập link này vào trình duyệt của bạn:https://olm.vn/hoi-dap/detail/214469884091.html
Cho số hữu tỉ x khác 0.Khi nào thì\(\frac{1}{x}\)là 1 số nguyên
Bài 1: Cho số hữu tỉ sau: x = \(\frac{2a-5}{-3}\)
Với giá trị nào của a thì
a) x là số dương
b) x là số âm
c) x là số 0
Bài 2: Cho các số hữu tỉ
x = \(\frac{3a-5}{4}\)( a khác 0 )
Với giá trị nguyên nào của a thì x là số nguyên
1) a) Để x > 0
=> \(2a-5< 0\)
\(\Rightarrow2a< 5\)
\(\Rightarrow a< 2,5\)
\(\text{Vậy }x>0\Leftrightarrow a< 2,5\)
b) Để x < 0
\(\Rightarrow2a-5>0\)
\(\Rightarrow2a>5\)
\(\Rightarrow a>2,5\)
\(\text{Vậy }x< 0\Leftrightarrow a>2,5\)
c) Để x = 0
\(\Rightarrow2a-5=0\)
\(\Rightarrow2a=5\)
\(\Rightarrow a=2,5\)
\(\text{Vậy }x=0\Leftrightarrow a=2,5\)
2) \(\text{Vì }a\inℤ\Rightarrow3a-5\inℤ\)
\(\text{mà }x\inℤ\Leftrightarrow3a-5⋮4\)
\(\Rightarrow3a-5\in B\left(4\right)\)
\(\Rightarrow3a-5\in\left\{0;4;8;...\right\}\)
\(\Rightarrow3a\in\left\{5;9;13;....\right\}\)
\(\Rightarrow a\in\left\{\frac{5}{3};3;\frac{13}{3};6;....\right\}\)
\(\text{Mà }a\inℤ\Rightarrow a\in\left\{3;6;9;...\right\}\text{thì }x\inℤ\)
Cho a,b,c là các số hữu tỉ đôi một khác nhau
\(CMR\) \(M=\frac{1}{\left(a-b\right)^2}+\frac{1}{\left(c-a\right)^2}+\frac{1}{\left(b-c\right)^2}\) là bình phương của 1 số hữu tỉ
Cho a,b,c là 3 số hữu tỉ thỏa mãn \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{1}{abc}\)
\(CMR\)\(M=\left(1+a^2\right)\left(1+b^2\right)\left(1+c^2\right)\)là bình phương một số hữu tỉ
Cho \(a+b+c=0;x+y+z=0;\frac{a}{x}+\frac{b}{y}+\frac{c}{z}=0\)
\(CM\) \(ax^2+by^2+cz^2=0\)
3/ Ta có:
\(x+y+z=0\)
\(\Rightarrow x^2=\left(y+z\right)^2;y^2=\left(z+x\right)^2;z^2=\left(x+y\right)^2\)
\(a+b+c=0\)
\(\Rightarrow a+b=-c;b+c=-a;c+a=-b\)
\(\frac{a}{x}+\frac{b}{y}+\frac{c}{z}=0\)
\(\Leftrightarrow ayz+bxz+cxy=0\)
Ta có:
\(ax^2+by^2+cz^2=a\left(y+z\right)^2+b\left(z+x\right)^2+c\left(x+y\right)^2\)
\(=x^2\left(b+c\right)+y^2\left(c+a\right)+z^2\left(a+b\right)+2\left(ayz+bzx+cxy\right)\)
\(=-ax^2-by^2-cz^2\)
\(\Leftrightarrow2\left(ax^2+by^2+cz^2\right)=0\)
\(\Leftrightarrow ax^2+by^2+cz^2=0\)
1/ Đặt \(a-b=x,b-c=y,c-z=z\)
\(\Rightarrow x+y+z=0\)
Ta có:
\(\frac{1}{\left(a-b\right)^2}+\frac{1}{\left(b-c\right)^2}+\frac{1}{\left(c-a\right)^2}=\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}\)
\(=\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}+\frac{2\left(x+y+z\right)}{xyz}\)
\(=\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}+2\left(\frac{1}{xy}+\frac{1}{yz}+\frac{1}{zx}\right)=\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)^2\)
2/ \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{1}{abc}\)
\(\Leftrightarrow ab+bc+ca=1\)
Ta có:
\(M=\left(1+a^2\right)\left(1+b^2\right)\left(1+c^2\right)\)
\(=\left(ab+bc+ca+a^2\right)\left(ab+bc+ca+b^2\right)\left(ab+bc+ca+c^2\right)\)
\(=\left(a+b\right)\left(a+c\right)\left(b+a\right)\left(b+c\right)\left(c+a\right)\left(c+b\right)\)
\(=\left[\left(a+b\right)\left(b+c\right)\left(c+a\right)\right]^2\)
Bài 1: Tìm số hữu tỉ x;y;z :
a) x(x+y+z) = -5
y(x+y+z) = 9
z(x+y+z) = 5
b) x-y = x.y = x:y (y khác 0)
Bài 2: CMR: M không phải là số nguyên (biết a,b,c > 0).
\(M=\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}\)
bai1;a) cộng 2 vế của pt có;
x(x+y+z) +y(x+y+z) +z(x+y+z) = -5+9+5
(x+y+z)2 =9 => x+y+z = 3
x = -5/3
y = 9/3 =3
z = 5/3
b) x = 1/2 ; y =1
bai2;M = (a+b+c) / 2(a+b+c) = 1/2 không phải là số nguyên
2)
+Áp dụng : \(\frac{a}{a+b}>\frac{a}{a+b+c}\Rightarrow M>1\)
+ Áp dụng : \(\frac{a}{a+b}< \frac{a+c}{a+b+c}\Rightarrow M< 2\)
2>M>1 => M không là số nguyên.