Cho hình vuông ABCD, lấy điểm E nằm giữa hai điểm C và D. Tia phân giác của goc DAE cắt DE tại M. Tia phân giác của góc BAE cắt BC tại N. AK = AF
Cho hình vuông ABCD, lấy điểm E nằm giữa hai điểm C và D. Tia phân giác của goc DAE cắt DE tại M. Tia phân giác của góc BAE cắt BC tại N. Chứng minh MN vuông góc với AE.
Cho hình vuông ABCD, lấy điểm E nằm giữa hai điểm C và D. Tia phân giác của goc DAE cắt DE tại M. Tia phân giác của góc BAE cắt BC tại N. Chứng minh MN vuông góc với AE.
#Toán lớp 8Kẻ MK⊥AE tại K
Xét ΔADM vuông tại D và ΔAKM vuông tại K có
AM chung
\(\widehat{DAM}=\widehat{KAM}\)
Do đó: ΔADM=ΔAKM
=>AD=AK
mà AD=AB
nên AK=AB
Xét ΔAKN và ΔABN có
AK=AB
\(\widehat{KAN}=\widehat{BAN}\)
AN chung
Do đó: ΔAKN=ΔABN
=>\(\widehat{AKN}=\widehat{ABN}=90^0\)
=>NK\(\perp\)AE
mà MK\(\perp\)AE
và MK,NK có điểm chung là K
nên MN\(\perp\)AE
cho hình vuông ABCD, điểm e nằm bất kì trên đoạn CD, Tia phân giác góc DAE cắt CD tại M, phân giác góc BAE cắt BC tại NCM MN vuông góc AEtính chu vi CMN biết AB a
cho hình vuông ABCD, điểm e nằm bất kì trên đoạn CD, Tia phân giác góc DAE cắt CD tại M, phân giác góc BAE cắt BC tại N
CM MN vuông góc AE
tính chu vi CMN biết AB=a
Cho hình vuông ABCD, E thuộc CD. Tia phân giác của góc DAE cắt CD tại I. Tia phân giác của góc BAE cắt BC tại K. Chứng minh: IK vuông góc với AE
Hình vuông ABCD, AB=BC=CD=DA=10cm. E thuộc CD, tia phân giác AF của góc DAE (F thuộc CD). FH vuông góc với AE (H thuộc AE), FH cắt BC tại K. Chứng minh rằng:
a) AH=?
b) AK là tia phân giác của góc BAE
c) Chu vi của tam giác CFK=?
Cho hình vuông ABCD, E thuộc CD. Tia phân giác của góc DAE cắt CD tại I. Tia phân giác của góc BAE cắt BC tại K. Chứng minh: IK vuông góc với AE
Gọi F là gđ của IK và AE. Cm IA là phân giác của góc DIF. Qua A kẻ đt vuông góc với AK, cắt CD tại M.
Bạn cm các cặp tg bằng nhau : tg ADM = tgABK => tg AMI = tg AKI => đpcm
Cho hình vuông ABCD, E thuộc CD. Tia phân giác của góc DAE cắt CD tại I. Tia phân giác của góc BAE cắt BC tại K. Chứng minh: IK vuông góc với AE
Cứu Với
Kẻ IM\(\perp\)AE
Xét ΔADI vuông tại D và ΔAMI vuông tại M có
AI chung
\(\widehat{DAI}=\widehat{MAI}\)
Do đó: ΔADI=ΔAMI
=>AD=AM
mà AD=AB
nên AM=AB
Xét ΔAMK và ΔABK có
AM=AB
\(\widehat{MAK}=\widehat{BAK}\)
AK chung
Do đó: ΔAMK=ΔABK
=>\(\widehat{AMK}=\widehat{ABK}=90^0\)
\(\widehat{IMK}=\widehat{IMA}+\widehat{KMA}\)
\(=90^0+90^0=180^0\)
=>I,M,K thẳng hàng
=>IK\(\perp\)AE
Cho tam giác ABC vuông tại A. Trên tia BA lấy điểm D sao cho BC=BD. Vẽ DE vuông góc BC tại E.
a) C/m tam giác BAE cân
b) DE cắt AC tạ F. C/m BF là tia phân giác góc ABC
c) C/m FDC cân
d) Trên tia đối của tia À lấy điểm K sao cho AK=À. Khi góc ACB= 30 độ và AB=8cm. Tính BF