tìm x:
x^3-49x=0
tìm gtnn của\(\sqrt{49x^2-22x+9}\sqrt{49x^2+22x+9}\)
Tìm x
A) x3+x2=36
B) x3(x2+1)=49x
C) (x2-5x)2+10(x2-5x)+24=0
a) \(x^3\)+\(x^2\)=36
\(\Leftrightarrow\)\(x^3\)+\(x^2\)\(-36=0\)
\(\Leftrightarrow\)\(x^3\)\(-3x^2\)\(+4x^2\)\(-12x\)\(+12x-36=0\)
\(\Leftrightarrow\)\(x^2\left(x-3\right)+4x\left(x-3\right)+12\left(x-3\right)=0\)
\(\Leftrightarrow\)\(\left(x-3\right)\left(x^2+4x+12\right)=0\)
Suy ra: \(x-3=0\) hoặc \(x^2+4x+12=0\)
\(x-3=0\) \(\Leftrightarrow\) \(x=3\)\(x^2+4x+12=0\) (phương trình vô nghiệm)Vậy \(x=3\)
giờ mình đi học mai sẽ làm nốt phần còn lại
C) \(\left(x^2-5x\right)^2+10\left(x^2-5x\right)+24=0\)
\(\Leftrightarrow\) \(\left(\left(x^2-5x\right)^2+2.\left(x^2-5x\right).5+25\right)-1=0\)
\(\Leftrightarrow\) \(\left(x^2-5x+5\right)^2-1=0\)
\(\Leftrightarrow\) \(\left(x^2-5x+5-1\right).\left(x^2-5x+5+1\right)=0\)
\(\Leftrightarrow\) \(\left(x^2-5x+4\right).\left(x^2-5x+6\right)=0\)
Suy ra \(x^2-5x+4=0\) hoặc \(x^2-5x+6=0\)
Nếu \(x^2-5x+4=0\) \(\Leftrightarrow\) \(\left(x-1\right).\left(x-4\right)=0\) \(\Leftrightarrow\) \(\left[\begin{array}{} x=1\\ x=4 \end{array} \right.\)
Nếu \(x^2-5x+6=0\) \(\Leftrightarrow\) \(\left(x-2\right).\left(x-3\right)=0\) \(\Leftrightarrow\) \(\left[\begin{array}{} x=2\\ x=3 \end{array} \right.\)
Vậy x \(\in\) {1;2;3;4}
Tìm x:x.(x-3)+x-3=0
tìm x
49x(x-21)=441
49x = 441 + 1029 = 1470 =. x = 1470 : 49 = 30
49x(x-21)=441
x-21 = 441 : 49
x-21 = 9
x = 9 + 21
x = 30
tìm x:x^3-6x^2+12x+19=0
\(=\left(x^3+x^2\right)-\left(7x^2+7x\right)+\left(19x+19\right)=\left(x+1\right)\left(x^2-7x+19\right)=0\)
Ta thấy: \(x^2-7x+19=x^2-2\times\frac{7}{2}x+\frac{7}{2}^2+\frac{27}{4}=\left(x-\frac{7}{2}\right)^2+\frac{27}{4}\ge\frac{27}{4}\)lớn hơn 0
\(\Rightarrow x+1=0\Rightarrow x=-1\)
\(x^3-6x^2+12x+19=0\)
\(\Leftrightarrow\left(x^3+x^2\right)-\left(7x^2+7x\right)+\left(19x+19\right)=0\)
\(\Leftrightarrow\left(x+1\right)\left(x^2-7x+19\right)=0\)
Mà \(x^2-7x+19>0\)với \(\forall x\)
\(\Rightarrow x+1=0\)
\(\Leftrightarrow x=-1\)
Vậy \(x=-1\)
1/2x^3 - 49x =0
\(\dfrac{1}{2}x^3-49x=0\)
\(\dfrac{1}{2}x^2.x-49x=0\)
\(x.\left(\dfrac{1}{2}x^2-49\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=0\\\dfrac{1}{2}x^2-49=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=0\\\dfrac{1}{2}x^2=49\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=0\\x^2=98\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=0\\x=7\sqrt{2}\end{matrix}\right.\)
Vậy \(x\in\left\{0,7\sqrt{2}\right\}\)
Tìm x:
49x^3 - x = 0
49. x3-x=0
<=> 49. x(x2-1)=0
<=> 49. x(x2-12)=0
<=> 49.x(x-1)(x+1)=0
=> x=0 hoặc x-1=0 hoặc x+1=0
=> x=0 hoặc x=1 hoặc x= -1
49. x3-x=0
<=> 49. x(x2-1)=0
<=> 49. x(x2-12)=0
<=> 49.x(x-1)(x+1)=0
=> x=0 hoặc x-1=0 hoặc x+1=0
=> x=0 hoặc x=1 hoặc x= -1
Tìm x:
x²+5y²+8xy-2y-2x+2=0
Bài 2 :Tim x biết 1)16x^2 - 9(x + 1)^2 = 0 2) (5x - 4)^2 - 49x^2 = 0 3) 5x^3 - 20x = 0