tìm tất cả số tự nhiên a,b (a>b) có BCNN bằng 366 và ƯCLN bằng 12 giúp em với ạ :>
Tìm hai số tự nhiên và () có BCNN bằng và ƯCLN bằng .
Đáp số: và .
Vì ƯCLN(a;b) = 12 ⇒ a = 12.k; b = 12.d (k;d) = 1
Theo bài ra ta có: a.b = 12.k.12.d = 12.252
k.d = 12.252: 12:12
k.d = 21
21 = 3.7 ⇒ Ư(21) = {1; 3; 7; 21)
Lập bảng ta có:
k | 1 | 3 | 7 | 21 |
d | 21 | 7 | 3 | 1 |
a = 12k | 12 | 36 | 84 | 252 |
b = 12d | 252 | 84 | 36 | 12 |
Theo bảng trên ta có:
(a;b) = (12; 252); (36; 84); (84; 36); (252; 12)
Vì 12 < a < b nên (a;b) = (36; 84)
Kết luận: các cặp số tự nhiên a; b thỏa mãn đề bài là: (a;b) = (36; 84)
Tìm hai số tự nhiên $a$ và $b$ ($12 < a < b$) có BCNN bằng $180$ và ƯCLN bằng $12$.
Ta có (a;b).[a;b] = a.b
\(\Rightarrow ab=12.180=2160\)
Lại có (a;b) = 12 đặt \(\hept{\begin{cases}a=12m\\b=12n\end{cases}}\left(m< n;m;n\inℕ^∗\right)\)
Khi đó ab = 1260
\(\Leftrightarrow12m.12n=2160\)
\(\Leftrightarrow m.n=15\)
Lập bảng xét các trường hợp
m | 5 | 15 |
n | 3 | 1 |
a | 60 | 180 |
b | 36 | 12(loại) |
Vậy a = 60 ; b = 36
ƯCLN = , ta xét ;
với .
Do là ƯCLN của và nên ƯCLN.
Ta có:
⋮ ⋮ ⋮ .
⋮ ⋮ ⋮ .
Suy ra là hai ước nguyên tố cùng nhau của .
Dễ thấy, thỏa mãn điều kiện trên với và ƯCLN.
Vậy và .
Tìm hai số tự nhiên a và b ( a> b) có BCNN bằng 336 và ƯCLN bằng 12
Tìm hai số tự nhiên a và b (a > b) có BCNN bằng 336 và ƯCLN bằng 12
Tìm hai số tự nhiên a và b (a > b) có BCNN bằng 336 và ƯCLN bằng 12 ?
Ta có : ƯCLN(a,b) . BCNN(a,b) = a.b
\(\Rightarrow a.b=336.12=4032\)
Vì ƯCLN (a,b) = 12
\(\Rightarrow\left\{{}\begin{matrix}a=12k\\b=12q\end{matrix}\right.\left(ƯCLN\left(k,q\right)=1;k>q\right)\)
Mà : a.b = 4032
\(\Rightarrow12k.12q=4032\Rightarrow\left(12.12\right)\left(k.q\right)=4032\)
\(\Rightarrow144.k.q=4032\Rightarrow k.q=28\)
+) \(\Rightarrow\left\{{}\begin{matrix}k=28\\q=1\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}a=28.12\\b=1.12\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}a=336\\b=12\end{matrix}\right.\)
+) \(\Rightarrow\left\{{}\begin{matrix}k=14\\q=2\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}a=14.12\\b=12.2\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}a=168\\b=24\end{matrix}\right.\)
+) \(\Rightarrow\left\{{}\begin{matrix}k=7\\q=4\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}a=7.12\\b=4.12\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}a=84\\b=48\end{matrix}\right.\)
Vậy a = 336 ; b = 12
a = 168 ; b = 24
a = 84 ; b = 48
Ta có : ƯCLN(a,b) . BCNN(a,b) = a.b
⇒a.b=336.12=4032⇒a.b=336.12=4032
Vì ƯCLN (a,b) = 12
⇒{a=12kb=12q(ƯCLN(k,q)=1;k>q)⇒{a=12kb=12q(ƯCLN(k,q)=1;k>q)
Mà : a.b = 4032
⇒12k.12q=4032⇒(12.12)(k.q)=4032⇒12k.12q=4032⇒(12.12)(k.q)=4032
⇒144.k.q=4032⇒k.q=28⇒144.k.q=4032⇒k.q=28
+) ⇒{k=28q=1⇒{a=28.12b=1.12⇒{a=336b=12⇒{k=28q=1⇒{a=28.12b=1.12⇒{a=336b=12
+) ⇒{k=14q=2⇒{a=14.12b=12.2⇒{a=168b=24⇒{k=14q=2⇒{a=14.12b=12.2⇒{a=168b=24
+) ⇒{k=7q=4⇒{a=7.12b=4.12⇒{a=84b=48⇒{k=7q=4⇒{a=7.12b=4.12⇒{a=84b=48
Vậy a = 336 ; b = 12
a = 168 ; b = 24
a = 84 ; b = 48
Tìm hai số tự nhiên a và b ( a > b ) có BCNN bằng 336 và ƯCLN bằng 12.
Trong công thức toán ta có ƯCLN * BCNN = a*b
Thế vào ƯCLN và BCNN
336*12=4032= a*b
4032=63*64
Vì a>b nên a=64
b=63
**** cho mk nha
Tìm hai số tự nhiên a và b(a>b)có BCNN bằng 336 va ƯCLN bằng 12
Câu hỏi của Cặp đôi ngọt ngào - Toán lớp 6 - Học toán với OnlineMath
tham khảo!
Tìm hai số tự nhiên a và b (a > b) có BCNN bằng 336 và ƯCLN bằng 12.
Tìm hai số tự nhiên và () có BCNN bằng và ƯCLN bằng .
Đáp số: và .
Giúp mình
Lời giải:
Vì ƯCLN của a,b là $15$ nên đặt $a=15x, b=15y$ với $(x,y)=1$ và $1< x< y$
Khi đó:
BCNN(a,b) = $15xy=525$
$\Rightarrow xy=35$
Vì $(x,y)=1$ và $1< x< y$
$\Rightarrow (x,y)=(5,7)$
$\Rightarrow (a, b) = (15.5, 15.7) = (75, 105)$