Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Trần Cao Vỹ Lượng
Xem chi tiết
FL.Hermit
11 tháng 8 2020 lúc 11:15

Câu b, c tương tự câu a. Mình làm câu a coi như tượng trưng nha !!!!!!

a) Đặt: \(A=\sqrt[3]{2+\sqrt{5}}+\sqrt[3]{2-\sqrt{5}}\)

<=> \(A^3=2+\sqrt{5}+2-\sqrt{5}+3\sqrt[3]{\left(2-\sqrt{5}\right)\left(2+\sqrt{5}\right)}.\left(\sqrt[3]{2+\sqrt{5}}+\sqrt[3]{2-\sqrt{5}}\right)\)

<=> \(A^3=4+3\sqrt[3]{4-5}.A\)

<=> \(A^3=4-3A\)

<=> \(A^3+3A-4=0\)

<=> \(\left(A-1\right)\left(A^2+A+4\right)=0\)

Có:     \(A^2+A+4=\left(A+\frac{1}{2}\right)^2+\frac{15}{4}\ge\frac{15}{4}>0\)

=>    \(A-1=0\)

<=> \(A=1\)

=> \(\sqrt[3]{2+\sqrt{5}}+\sqrt[3]{2-\sqrt{5}}=1\)

VẬY TA CÓ ĐPCM

Khách vãng lai đã xóa
Nguyễn Đại Nghĩa
Xem chi tiết
Oriana.su
Xem chi tiết
Nguyễn Lê Phước Thịnh
7 tháng 7 2021 lúc 22:25

a) Ta có: \(A^3=\left(\sqrt[3]{2+\sqrt{5}}+\sqrt[3]{2-\sqrt{5}}\right)^3\)

\(=2+\sqrt{5}+2-\sqrt{5}+3\cdot\sqrt[3]{\left(2+\sqrt{5}\right)\left(2-\sqrt{5}\right)}\left(\sqrt[3]{2+\sqrt{5}}+\sqrt[3]{2-\sqrt{5}}\right)\)

\(=4-3\cdot A\)

\(\Leftrightarrow A^3+3A-4=0\)

\(\Leftrightarrow A^3-A+4A-4=0\)

\(\Leftrightarrow A\left(A-1\right)\left(A+1\right)+4\left(A-1\right)=0\)

\(\Leftrightarrow\left(A-1\right)\left(A^2+A+4\right)=0\)

\(\Leftrightarrow A=1\)

Huỳnh Diệu Linh
Xem chi tiết
Ling ling 2k7
Xem chi tiết
Nguyễn Việt Lâm
2 tháng 8 2021 lúc 17:09

Đặt \(x=\sqrt[3]{20+14\sqrt[]{2}}+\sqrt[3]{20-14\sqrt[]{2}}\)

\(\Rightarrow x^3=40+3\sqrt[3]{\left(20+14\sqrt[]{2}\right)\left(20-14\sqrt[]{2}\right)}.\left(\sqrt[3]{20+14\sqrt[]{2}}+\sqrt[3]{20-14\sqrt[]{2}}\right)\)

\(\Rightarrow x^3=40+6x\)

\(\Rightarrow x^3-6x-40=0\)

\(\Rightarrow\left(x-4\right)\left(x^2+4x+10\right)=0\)

\(\Rightarrow x=4\)

Vậy \(\sqrt[3]{20+14\sqrt[]{2}}+\sqrt[3]{20-14\sqrt[]{2}}=4\)

Hữu Nguyễn Văn
Xem chi tiết
Không Quan Tâm
Xem chi tiết
Lê Thị Khánh Huyền
Xem chi tiết
Nguyễn Lê Phước Thịnh
18 tháng 12 2022 lúc 14:58

a: \(A=\sqrt[3]{9+4\sqrt{5}}+\sqrt[3]{9-4\sqrt{5}}\)

\(\Leftrightarrow A^3=9+4\sqrt{5}+9-4\sqrt{5}+3\cdot A\)

=>A^3-3A-18=0

=>A=3

b: \(B=\sqrt[3]{5\sqrt{2}+7}-\sqrt[3]{5\sqrt{2}-7}\)

=>\(B^3=5\sqrt{2}+7-5\sqrt{2}+7+3B\)

=>B^3-3B-14=0

=>B=2,82

c: \(C^3=20+14\sqrt{2}-14\sqrt{2}+20-6C\)

=>C^3+6C-40=0

=>C=2,84

crgtdgfgfh
Xem chi tiết
Nguyễn Đình Toàn
7 tháng 11 2017 lúc 15:01

\(2\sqrt[3]{20+14\sqrt{2}}\)2

Nguyễn Anh Quân
7 tháng 11 2017 lúc 15:02

\(\sqrt[3]{\left(2+\sqrt{2}\right)^3}+\sqrt[3]{\left(2+\sqrt{2}\right)^3}\) = \(2+\sqrt{2}+2+\sqrt{2}\) = 4+\(2\sqrt{2}\)

Nguyễn Đình Toàn
7 tháng 11 2017 lúc 15:03

Lộn nha = \(2\sqrt[3]{20+14\sqrt{2}}\) mới đúng nha.