So sánh các số a,b,c,biết rằng \(\frac{a}{b}=\frac{b}{c}=\frac{c}{a}\)
So sánh các số a,b,c,,biết rằng:\(\frac{a}{b}=\frac{b}{c}=\frac{c}{a}\)
so sánh các số a,b,c ,biết rằng \(\frac{a}{b}=\frac{b}{c}=\frac{c}{a}\)
Áp dụng tc của dãy tỉ số bằng nhau ta có:
\(\frac{a}{b}=\frac{b}{c}=\frac{c}{a}=\frac{a+b+c}{b+c+a}=1\)
\(\Rightarrow a=b=c\)
ap dung tinh chat của dãy tỉ số bằng nhau ta có
a/b = b/c=c/a = a+b+c / a+b+c = 1
*) a/b = 1=> a = b (1)
*) b/c = 1 => b = c (2)
*) c/a = 1 => c = a (3)
từ (1)(2)(3)
=> a = b= c
so sánh các số a, b, c biết rằng \(\frac{a}{b}=\frac{b}{c}=\frac{c}{a}\)
milky way lam duoc nhe . ban can minh giai bai lam chu ???
So sánh các số a, b và c. Biết rằng : \(\frac{a}{b}=\frac{b}{c}=\frac{c}{a}\)
Áp dụng tính chất của dãy tỉ số = nhau ta có:
\(\frac{a}{b}=\frac{b}{c}=\frac{c}{a}=\frac{a+b+c}{b+c+a}=1\)
=> \(\hept{\begin{cases}\frac{a}{b}=1\\\frac{b}{c}=1\\\frac{c}{a}=1\end{cases}}\)\(\Rightarrow a=b=c\)
vậy 3 số a=b=c
ko trình bày tự tìm hiểu
so sánh các số a, b và c biết rằng \(\frac{a}{b}=\frac{b}{c}=\frac{c}{a}\)
Áp dụng tc của dãy tỉ số bằng nhau ta có :
\(\frac{a}{b}=\frac{b}{c}=\frac{c}{a}=\frac{a+b+c}{b+c+a}=1\)
\(\Rightarrow\begin{cases}a=b\\b=c\\c=a\end{cases}\)
\(\Rightarrow a=b=c\)
Vậy a = b = c
So sánh các số a,b,c biết rằng :\(\frac{a}{b}=\frac{b}{c}=\frac{c}{a}\)
áp dụng tính chất của dãy tỉ số bằng nhau ta có:
\(\frac{a}{b}=\frac{b}{c}=\frac{c}{a}=\frac{a+b+c}{a+b+c}=1\)
suy ra: \(\frac{a}{b}=1\Rightarrow a=b;\frac{b}{c}=1\Rightarrow b=c\Rightarrow a=b=c\)
So sánh các số a, b và c biết rằng \(\frac{a}{b}=\frac{b}{c}=\frac{c}{a}\)
Theo tính chất dãy tỉ số bằng nhau, ta có:
\(\frac{a}{b}+\frac{b}{c}+\frac{c}{a}=\frac{a+b+c}{b+c+a}=1\)
=> \(\frac{a}{b}=1=>a=b\) (1)
=>\(\frac{b}{c}=1=>b=c\) (2)
=>\(\frac{c}{a}=1=>c=a\) (3)
Từ (1), (2), (3), suy ra:
\(a=b=c\)
So sánh các số \(a,\) \(b\) và \(c\), biết rằng \(\frac{a}{b}=\frac{b}{c}=\frac{c}{a}\)
Áp dụng tính chất dãy tỉ số bằng nhau ,ta có :
\(\frac{a}{b}=\frac{b}{c}=\frac{c}{a}=\frac{a+b+c}{b+c+a}=1\)
\(\Rightarrow\hept{\begin{cases}a=b\\b=c\\b=a\end{cases}}\Rightarrow a=b=c\)
Cái phần ngoặc nhọn ấy bn làm ko hỉu mấy
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\Leftrightarrow\frac{a}{b}=\frac{b}{c}=\frac{c}{a}=\frac{a+b+c}{b+c+a}=1\)
\(\Leftrightarrow\hept{\begin{cases}\frac{a}{b}=1\\\frac{b}{c}=1\\\frac{c}{a}=1\end{cases}}\Rightarrow\hept{\begin{cases}a=b\left(1\right)\\b=c\left(2\right)\\c=a\left(3\right)\end{cases}}\)
Từ (1) , ( 2 ) và (3) ta được: a=b=c
Bài 1; So sánh 2 số A và B ,biết rằng
\(A=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{49..50}\)
\(B=\frac{1}{10}+\frac{1}{11}+\frac{1}{12}+...+\frac{1}{99}+\frac{1}{100}\)
Bài 2 : Cho \(S=\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}\)
Biết rằng \(a+b+c=7\)và \(\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{c+a}=\frac{7}{10}\)
Hãy so sánh \(S\)và \(1\frac{8}{11}\)
Bài 1 :
\(A=\frac{2-1}{1.2}+\frac{3-2}{2.3}+\frac{4-3}{3.4}+...+\frac{50-49}{49.50}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{3}+...+\frac{1}{49}-\frac{1}{50}\)
\(=1-\frac{1}{50}< 1\left(1\right)\)
\(B=\frac{1}{10}+\left(\frac{1}{11}+\frac{1}{12}+...+\frac{1}{99}+\frac{1}{100}\right)\)\(>\frac{1}{10}+\frac{1}{100}.90=1\left(2\right)\)
Từ (1) và ( 2) ta có \(A< 1\) \(B>1\)NÊN \(A< B\)
Bài 2:
\(S=\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}\)
\(=\frac{\left(a+b+c\right)-\left(b+c\right)}{b+c}+\)\(\frac{\left(a+b+c\right)-\left(c+a\right)}{c+a}\)\(+\frac{\left(a+b+c\right)-\left(a+b\right)}{a+b}\)
\(=\frac{7-\left(b+c\right)}{b+c}+\frac{7-\left(c+a\right)}{c+a}+\frac{7-\left(a+b\right)}{a+b}\)
\(=7.\left(\frac{1}{b+c}+\frac{1}{c+a}+\frac{1}{a+b}\right)-3\)
\(=7.\frac{7}{10}-3\)\(=\frac{49}{10}-3=\frac{19}{10}\)
\(S=\frac{19}{10}>\frac{19}{11}=1\frac{8}{11}\)
Chúc bạn học tốt ( -_- )
Bài 1:
ta có: \(A=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{49.50}\)
\(A=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{49}-\frac{1}{50}\)
\(A=1-\frac{1}{50}< 1\)
\(\Rightarrow A< 1\)(1)
ta có: \(\frac{1}{11}>\frac{1}{100};\frac{1}{12}>\frac{1}{100};...;\frac{1}{99}>\frac{1}{100}\)
\(\Rightarrow\frac{1}{11}+\frac{1}{12}+...+\frac{1}{99}+\frac{1}{100}>\frac{1}{100}+\frac{1}{100}+...+\frac{1}{100}+\frac{1}{100}\) ( có 90 số 1/100)
\(=\frac{90}{100}=\frac{9}{10}\)
\(\Rightarrow B=\frac{1}{10}+\frac{1}{11}+\frac{1}{12}+...+\frac{1}{99}+\frac{1}{100}>\frac{1}{10}+\frac{9}{10}=1\)
\(\Rightarrow B>1\)(2)
Từ (1);(2) => A<B
Bài 2:
ta có: \(S=\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}\)
\(\Rightarrow S=\left(\frac{a}{b+c}+1\right)+\left(\frac{b}{c+a}+1\right)+\left(\frac{c}{a+b}+1\right)-3\)
\(S=\frac{a+b+c}{b+c}+\frac{a+b+c}{c+a}+\frac{a+b+c}{a+b}-3\)
\(S=\left(a+b+c\right).\left(\frac{1}{b+c}+\frac{1}{c+a}+\frac{1}{a+b}\right)-3\)
thay số: \(S=7.\frac{7}{10}-3\)
\(S=4\frac{9}{10}-3\)
\(S=1\frac{9}{10}=\frac{19}{10}\)
mà \(1\frac{8}{11}=\frac{19}{11}\)
\(\Rightarrow\frac{19}{10}>\frac{19}{11}\)
\(\Rightarrow S>\frac{19}{11}\)
\(\Rightarrow S>1\frac{8}{11}\)