Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
lindd
Xem chi tiết
Đinh Lan Phương
Xem chi tiết
Nguyễn Đức Trí
17 tháng 7 2023 lúc 16:08

\(P=\sqrt[]{x}+\dfrac{3}{\sqrt[]{x}-1}\left(x>1\right)\)

\(P=\sqrt[]{x}-1+\dfrac{3}{\sqrt[]{x}-1}+1\)

Áp dụng bất đẳng thức Cauchy cho 2 số \(\sqrt[]{x}-1;\dfrac{3}{\sqrt[]{x}-1}\) ta được :

\(\sqrt[]{x}-1+\dfrac{3}{\sqrt[]{x}-1}\ge2\sqrt[]{\sqrt[]{x}-1.\dfrac{3}{\sqrt[]{x}-1}}\)

\(\Rightarrow\sqrt[]{x}-1+\dfrac{3}{\sqrt[]{x}-1}\ge2\sqrt[]{3}\)

\(\Rightarrow P=\sqrt[]{x}-1+\dfrac{3}{\sqrt[]{x}-1}+1\ge2\sqrt[]{3}+1\)

\(\Rightarrow Min\left(P\right)=2\sqrt[]{3}+1\)

Đinh Lan Phương
17 tháng 7 2023 lúc 16:15

sorry mn cho e sửa lại đề ạ

tìm gtln của p ạ

 

Toản Hồ
Xem chi tiết
NBT
Xem chi tiết
namdz
Xem chi tiết
Kiều Vũ Linh
18 tháng 9 2023 lúc 17:52

A đâu em?

namdz
18 tháng 9 2023 lúc 18:48

\(A=\dfrac{x}{\sqrt{x}+1}+\dfrac{\sqrt{x}+2x}{x+\sqrt{x}}\)

namdz
Xem chi tiết
Tạ Khánh Linh
Xem chi tiết
marie
Xem chi tiết
Lê Quỳnh Thanh Ngân
17 tháng 10 2018 lúc 21:13

cmr là cái j

Nguyễn Thị Xuân
4 tháng 4 2021 lúc 9:59

Lê Thanh Thùy Ngân 

cmr là chứng minh rằng bạn nhé 

Khách vãng lai đã xóa
Hàanh Nguyễn
Xem chi tiết
Laku
10 tháng 7 2021 lúc 9:35

undefined