Chứng minh:(7^n+2)+(8^2n+1)chia hết cho 19
chứng minh rằng với mọi số nguyên dương n thì 7^n+2+8^2n+1 chia hết cho 19
ai giúp mình với
chứng minh rằng: A= (7*82n+12*6n)chia hết cho 19
Chứng minh rằng với moi số nguyên dương n thì:
a) \(7^{n+2}+8^{2n+1}\) chia hết cho 19
b) \(n^4+6n^3+11n^2+6n\) chia hết cho 24
a) Với n=1 thì \(7^{^{ }3}+8^3\) chia hết cho \(7^2-56+8^2nên\) chia hết cho 19
Giả sử \(7^{k+2}+8^{k+2}\) chia hết cho 19 (k >_ 1)
Xét \(7^{k=3}+8^{2k+3}=7.7^{k+2}+64.8^{2k+1}=7.\left(7^{k+2}+8^{2k+1}\right)+57.8^{2k+1}\) chia hết cho 19
Muộn rồi b chiều tớ hứa là sẽ làm 4h30' chiều
b)Với n=1 thì 1+6+11+6 =24 chia hết cho 24
Giả sử \(k^4+6k^3+11k^2+6k\) chia hết cho 24 (k >_ 1)
Xét: \(\left(k+1\right)^4+6.\left(k+1\right)^3+11.\left(k+1\right)^2+6.\left(k+1\right)\)
=( \(k^4+6k^3+11k^2+6k\)) + 24.(\(k^2+1\))+4.\(\left(k^3+11k\right)\)
Ta thấy hai số hạng đầu chia hết cho 24.Phải chứng minh 4.\(\left(k^3+11k\right)\)chia hết cho 24,tức là chứng minh \(k^3+11k\) chia hết cho 6.Điều này được chứng minh một cách dễ dàng.
Bài tập :chứng minh rằng :
a, \(2^{2^{2n+1}}+3\) chia hết cho 7
b, \(6^{2n}+19^n-2^{n+1}\) chia hết cho 17
c,\(5^{n+2}+26\cdot5^n+8^{2n+1}\) chia hết cho 59
d, \(2^{2^{6n+2}}+21\) chia hết cho 37
Chứng minh rằng với mọi số n nguyên dương thì:
a/ (62n + 19n - 2n+1) chia hết cho 17
b/ (7.52n + 12.6n) chia hết cho 19
c/ (5n+2 + 26.5n + 82n+1) chia hết cho 59
\(5^{n+2}+26.5^n+8^{2n+1}\)
\(=5^n.5^2+26.5^n+8^{2n}.8\)
\(=5^n.25+26.5^n+64^n.8\)
\(=5^n.25+34.5^n-8.5^n+64^n.8\)
\(=5^n\left(25+34\right)+8\left(64^n-5^n\right)\)
\(=5^n.59+8\left(64^n-5^n\right)\)
Áp dụng t/c: Nếu \(\left(a-b\right)⋮m\)thì \(\left(a^n-n^n\right)⋮m\)
\(\Rightarrow8\left(64^n-5^n\right)⋮59\)
Mà \(5^n.59⋮59\)nên \(5^{n+2}+26.5^n+8^{2n+1}⋮59\left(đpcm\right)\)
Cho 10^n - 1 chia hết cho 19, n lớn hoặc bằng 2
chứng minh: A=10^ 2n - 1 chia hết cho 19.
Câu 34: Với n là số tự nhiên, chứng minh rằng:
a) \(11^{n+2}+12^{2n+1}\)chia hết cho 133
b) \(5^{n+2}+26.5^n+8^{2n+1}\)chia hết cho 59
c) \(7.5^{2n}+12.6^n\)chia hết cho 19
a, 11n+2+122n+1
= 11n.121+12.122n
= 11n.(133-12)+12.122n
= 11n.133-11nn .12+12.122n
=12.(144n-11n)+11n. 133
Có 144nn-11n \(⋮\)144-11=133
11n.133\(⋮\)133
=> dpcm
chứng minh
6^2n + 3^n+2 . 3^n chia hết cho 11
3012^93 - 1 chia hết cho 9
5^2n+1.2^n+2 + 3^n+2 . 2^2n+1 chia hết cho 19
2093^n - 803^n - 464^n - 261^n chia hết cho 271
ý 3 tớ không biết chia hết cho 9 hay là 19 ấy nhé
Chứng minh 7^2n + 3.13^n - 4^(n+1) chia hết cho 19 với mọi số tự nhiên n