Cho ∆ABC vuông tại A đường cao AK. Biết AB = 48cm, BC = 65cm. a) Giải ∆ABC.
b) Gọi M là trung điểm BC. Không tính số đo của MÂK, tính các tỉ số lượng giác của MÂK.
Cho tam giác ABC vuông tại A , đường cao AH ; biết AB= 9cm ; AC = 12cm . a) Tính BC , AH . b) Tính số đo góc B ( làm tròn đến phút ) c) Gọi M là trung điểm của BC. Đường thẳng vuông góc với BC tại M cắt AC tại D . Chứng minh 2AC.DC = BC2
Bài 1: Cho ABC vuông tại A có AB = 36cm; AC = 48cm. Gọi M là trung điểm của BC. Đường thẳng vuông góc với BC tại M cắt đường thẳng AC, AB theo thứ tự tại D và E
a) chứng minh rằng tam giác ABC đồng dạng tam giác MDC
b) Tính các cạnh của tam giác MDC
c) tính độ dài EC d) tính độ dài đoạn thẳng EC
e) tính tỉ số diện tính cảu hai tam giác MDC và ABC
d) tính độ dài đoạn tahrnưg EC
chij vào vndoc á xong rùi kéo xuống nó vẹ cho
Bài 1: Cho ABC vuông tại A có AB = 36cm; AC = 48cm. Gọi M là trung điểm của BC. Đường thẳng vuông góc với BC tại M cắt đường thẳng AC, AB theo thứ tự tại D và E
a) chứng minh rằng tam giác ABC đồng dạng tam giác MDC
b) Tính các cạnh của tam giác MDC
c) tính độ dài EC d) tính độ dài đoạn thẳng EC
e) tính tỉ số diện tính cảu hai tam giác MDC và ABC
d) tính độ dài đoạn tahrnưg EC
a, Xét △ABC vuông tại A và △MDC vuông tại M
Có: ∠ACB là góc chung
=> △ABC ᔕ △MDC (g.g)
b, Xét △ABC vuông tại A có: AB2 + AC2 = BC2 (định lý Pytago)
=> 362 + 482 = BC2 => BC2 = 3600 => BC = 60 (cm)
Vì M là trung điểm BC (gt) => MB = MC = BC : 2 = 60 : 2 = 30 (cm)
Vì △ABC ᔕ △MDC (cmt) \(\Rightarrow\frac{AB}{MD}=\frac{AC}{MC}\) \(\Rightarrow\frac{36}{MD}=\frac{48}{30}\)\(\Rightarrow MD=\frac{36.30}{48}=22,5\) (cm)
và \(\frac{AC}{MC}=\frac{BC}{DC}\)\(\Rightarrow\frac{48}{30}=\frac{60}{DC}\)\(\Rightarrow DC=\frac{30.60}{48}=37,5\) (cm)
c, Xét △BME vuông tại M và △BAC vuông tại A
Có: ∠MBE là góc chung
=> △BME ᔕ △BAC (g.g)
\(\Rightarrow\frac{BM}{AB}=\frac{BE}{BC}\) \(\Rightarrow\frac{30}{36}=\frac{BE}{60}\)\(\Rightarrow BE=\frac{30.60}{36}=50\) (cm)
Vì M là trung điểm BC (gt) mà ME ⊥ BC (gt)
=> ME là đường trung trực BC
=> EC = BE
Mà BE = 50 (cm)
=> EC = 50 (cm)
e, Ta có: \(\frac{S_{\text{△}MDC}}{S_{\text{△}ABC}}=\frac{\frac{1}{2}.MD.MC}{\frac{1}{2}.AB.AC}=\frac{22,5.30}{36.48}=\frac{675}{1728}=\frac{25}{64}\)
P/s: Sao nhiều câu cùng tính EC vậy? Pls, không làm loãng câu hỏi
Bài làm
@Mấy bạn bên dưới: nghiêm cấm không trả lời linh tinh, nhất bạn luffy toán học, bạn rảnh đến nỗi cũng hùa theo họ mà spam linh tinh à.
a) Xét tam giác ABC và tam giác MDC có:
\(\widehat{BAC}=\widehat{DMC}=90^0\)
\(\widehat{BCA}\)chung
=> Tam giác ABC ~ tam giác MDC ( g - g )
b) Xét tam giác ABC vuông tại A có:
Theo pytago có:
BC2 = AB2 + AC2
hay BC2 = 362 + 482
hay BC2 = 1296 + 2304
=> BC2 = 3600
=> BC = 60 ( cm )
Mà M là trung điểm BC
=> BM = MC = BC/2 = 60/2 = 30 ( cm )
Vì tam giác ABC ~ tam giác MDC ( cmt )
=> \(\frac{AB}{MD}=\frac{BC}{DC}=\frac{AC}{MC}\)
hay \(\frac{36}{MD}=\frac{60}{DC}=\frac{48}{30}\)
=> \(MD=\frac{36.30}{48}=22,5\left(cm\right)\)
=> \(DC=\frac{60.30}{48}=37,5\left(cm\right)\)
c) Xét tam giác MBE và tam giác ABC có:
\(\widehat{BME}=\widehat{BAC}=90^0\)
\(\widehat{ABC}\)chung
=> Tam giác MBE ~ tam giác ABC ( g - g )
=> \(\frac{ME}{AC}=\frac{BM}{AB}\)
hay \(\frac{ME}{48}=\frac{30}{36}\Rightarrow ME=\frac{48.30}{36}=40\left(cm\right)\)
Xét tam giác MEC vuông tại M có:
EC2 = MC2 + ME2
hay EC2 = 302 + 402
=> EC2 = 900 + 1600
=> EC2 = 50 ( cm )
a) Vì tam giác MDC ~ Tam giác ABC
=> \(\frac{S_{\Delta MDC}}{S_{\Delta ABC}}=\left(\frac{MD}{AB}\right)^2=\left(\frac{22,5}{36}\right)^2=\left(\frac{5}{8}\right)^2=\frac{25}{36}\)
Câu c, d và câu đ giống nhau ?
đoạn thẳng nhé mng ơi :((( em type nhanh quá ạ
Cho tam giác ABC vuông tại A (AB < AC), đường cao AH. a) Biết AB = 2cm, AC =2/3 m. Tính độ dài BC, AH và số đo góc B. b) Gọi E là trung điểm AC của tam giác ABC và K là hình chiếu vuông góc của A lên BE. Chứng minh BK BE = BH BC và tam giác KEC đồng dạng với tam giác CEB c) Giả thiết rằng tia CK đồng thời là phân giác của góc C của tam giác ABC. Chứng minh 2.cos B = taB
Cho tam giác ABC vuông tại A có đường cao AH. Biết rằng: AB=6cm, AC=8cm
a)Tính BC và AH
b)Tính các tỉ số lượng giác tanB và cotC
c)Gọi M là trung điểm của AC. Tinh MHC(làm tròn đến phút)
Bài 3: Cho tam giác ABC có đường cao BH. Biết AB = 40 cm, AC = 58 cm, BC = 42 cm
a) ABC có là tam giác vuông không? vì sao?
b) Tính các tỉ số lượng giác của góc A
c) Kẻ HE vuông AB tại E, HF vuông BC tại F. Tính BH, BE, BF và diện tích EFCA
Bài 3:
Giải tam giác MNP vuông tại M có góc N = 37 độ, NP 25 cm (độ dài làm tròn đến chữ số thập phân thứ nhất, góc làm tròn đến độ
Mong bạn Phong giúp mình:((
Lưu ý: Giải chi tiết từng bước
Bài 3:
Ta có:
\(\widehat{M}+\widehat{N}+\widehat{P}=180^o\)
\(\Rightarrow\widehat{P}=180^o-90^o-37^o=53^o\)
Mà: \(sinN=\dfrac{MN}{NP}\)
\(\Rightarrow sin37^o=\dfrac{MN}{25}\)
\(\Rightarrow MN=25\cdot sin37^o\approx15\left(cm\right)\)
Áp dung định lý Py-ta-go ta có:
\(MP=\sqrt{NP^2-MN^2}=\sqrt{25^2-15^2}=20\left(cm\right)\)
3:
a: Xét ΔABC có AC^2=BA^2+BC^2
nên ΔBAC vuông tại B
b: Xét ΔBAC vuông tại B có
sin A=BC/AC=42/58=21/29
cos A=AB/AC=40/58=20/29
tan A=BC/BA=21/20
cot A=BA/BC=20/21
c: Xét ΔABC vuông tại B có BH là đường cao
nên BH*AC=BA*BC; BA^2=AH*AC; CB^2=CH*CA
=>BH*58=40*42=1680
=>BH=840/29(cm)
BA^2=AH*AC
=>AH=BA^2/AC=40^2/58=800/29cm
CB^2=CH*CA
=>CH=CB^2/CA=42^2/58=882/29(cm)
ΔBHA vuông tại H có HE là đường cao
nênBE*BA=BH^2
=>BE*40=(840/29)^2
=>BE=17640/841(cm)
ΔBHC vuông tại H có HF là đường cao
nênBF*BC=BH^2
=>BF*42=(840/29)^2
=>BF=16800/841(cm)
Xét tứ giác BEHF có
góc BEH=góc BFH=góc EBF=90 độ
=>BEHF là hình chữ nhật
=>góc BFE=góc BHE(=1/2*sđ cung BE)
=>góc BFE=góc BAC
Xét ΔBFE và ΔBAC có
góc BFE=góc BAC
góc FBE chung
Do đó: ΔBFE đồng dạng với ΔBAC
=>S BFE/S BAC=(BF/BA)^2=(16800/441:40)^2=(420/841)^2
=>S AECF=S ABC*(1-(420/841)^2)
=>\(S_{AECF}=\dfrac{1}{2}\cdot40\cdot42\cdot\left[1-\left(\dfrac{420}{841}\right)^2\right]\simeq630,5\left(cm^2\right)\)
Đã đăng lên cộng đồng thì phải nhờ đến tất cả chứ bạn, nếu nhờ riêng ai đó thì mời ib?
Đăng như vậy có ngày không ai giúp bạn đâu.
Cho tam giác ABC vuông tại A ( AB < AC ). Gọi M là trung điểm BC, vẽ ME vuông góc AB tại E và MF vuông góc AC tại F. Gọi D là điểm đối xứng với M qua E. Vẽ đường cao AH của tam giác ABC. Tính số đo góc EHF
Cho tam giác ABC vuông tại A có đường cao AH chia cạnh huyền BC thành hai đoạn ; BH=4cm và HC=6cm
a) Tính độ dài các đoạn AH,AB,AC
b) Gọi M là trung điểm của AC . Tính số đo góc AMB ( làm tròn đến độ )
c) Kẻ AK vuông góc với BM ( K thuộc BM ) . Chứng minh BK.BM=BH.BC
cho tam giác ABC vuông tại A và AB=AC. Gọi M là trung điểm của BC
a) chứng minh tam giác ABM= tam giác ACM
b) qua C kẻ đường thẳng vuông góc với đường thẳng BC cắt đường thẳng AB tại K. chứng minh AK song song với CK
c) tính số đo góc BKC
tự kẻ hình nha
a) vì AB=AC=> tam giác ABC cân A=> ABC=ACB=180-90/2=45 độ
xét tam giác ABM và tam giác ACM có
AB=AC(gt)
ABC=ACB(cmt)
BM=CM(gt)
=> tam giác ABM= tam giác ACM(cgc)
b) phải là AM//CK nha
từ tam giác ABM= tam giác ACM=> AMB=AMC(hai góc tương ứng)
mà AMB+AMC=180 độ (kề bù)
=> AMB=AMC=180/2=90 độ=> AM vuông góc với BC, CK vuông góc với BC
=> AM//CK
c) vì tam giác BCK vuông tại C=> CBK+BKC=90 độ=> BKC=90-45=45 độ