* Vẽ hình lun dùm mik
cho tam giác ABC phân giác trong đỉnh A cắt bc tại D trên các đoạn thẳng BD, CD lần lượt lấy các điểm E và F sao cho góc EAD= góc FAD. chứng minh rằng BE/CE . BF/CF = AB^2/AC^2
Bước 1: Sử dụng định lý phân giác Giả sử rằng 𝐴 𝐷 AD là phân giác trong tam giác 𝐴 𝐵 𝐶 ABC, cắt cạnh 𝐵 𝐶 BC tại điểm 𝐷 D. Theo định lý phân giác, ta có: 𝐵 𝐷 𝐷 𝐶 = 𝐴 𝐵 𝐴 𝐶 DC BD = AC AB Điều này nói rằng tỉ số đoạn 𝐵 𝐷 BD và 𝐷 𝐶 DC bằng tỉ số cạnh 𝐴 𝐵 AB và 𝐴 𝐶 AC. Bước 2: Sử dụng góc EAD = góc FAD Từ đề bài, ta có ∠ 𝐸 𝐴 𝐷 = ∠ 𝐹 𝐴 𝐷 ∠EAD=∠FAD. Điều này có nghĩa là các điểm 𝐸 E và 𝐹 F nằm trên các đoạn 𝐵 𝐷 BD và 𝐶 𝐷 CD, sao cho các tam giác 𝐴 𝐵 𝐸 ABE và 𝐴 𝐶 𝐹 ACF có các góc tại đỉnh 𝐴 A bằng nhau. Bước 3: Áp dụng định lý về tỉ số các đoạn thẳng Vì ∠ 𝐸 𝐴 𝐷 = ∠ 𝐹 𝐴 𝐷 ∠EAD=∠FAD, ta có thể áp dụng định lý tương tự như định lý phân giác, và nó dẫn đến sự tương ứng giữa các đoạn thẳng của tam giác 𝐴 𝐵 𝐸 ABE và 𝐴 𝐶 𝐹 ACF và các cạnh của tam giác 𝐴 𝐵 𝐶 ABC. Cụ thể, ta có: 𝐵 𝐸 𝐶 𝐸 = 𝐴 𝐵 𝐴 𝐶 v a ˋ 𝐵 𝐹 𝐶 𝐹 = 𝐴 𝐵 𝐴 𝐶 CE BE = AC AB v a ˋ CF BF = AC AB Bước 4: Kết luận Do đó, ta có: 𝐵 𝐸 𝐶 𝐸 ⋅ 𝐵 𝐹 𝐶 𝐹 = ( 𝐴 𝐵 𝐴 𝐶 ) 2 = 𝐴 𝐵 2 𝐴 𝐶 2 CE BE ⋅ CF BF =( AC AB ) 2 = AC 2 AB 2 Vậy ta đã chứng minh được rằng 𝐵 𝐸 𝐶 𝐸 ⋅ 𝐵 𝐹 𝐶 𝐹 = 𝐴 𝐵 2 𝐴 𝐶 2 CE BE ⋅ CF BF = AC 2 AB 2 .
Cho tam giác ABC, phân giác góc A cắt BC tại D,trên các đoạn thẳng DB,DC lần lượt lấy các điểm E và F sao cho góc EAD= góc FAD. Chứng minh rằng BE/CE BF/CF =AB^2/AC^2
Cho tam giác ABC, phân giác góc A cắt BC tại D, trên các đoạn thẳng BD, DC lần lượt lấy các điểm E và F sao cho góc EAD = góc FAD. CMR:
\(\frac{BE}{CE}×\)\(\frac{BF}{CF}=\frac{AB^2}{AC^2}\)
cho tam giác abc có ba goc nhỏ hơn 90 độ. các đường cao bd và ce cắt nhau tại h. a, chứng minh tam giác abc đồng dạng với tam giác ace. b, chứng minh hb.hd=hd.he. c, trên các đoạn thẳng bd và ce lấy lần lượt 2 điểm m và n sao cho góc amc= góc anb=90 độ. chứng minh rằng am=an
a: Xét ΔADB vuông tại D và ΔAEC vuông tại E có
góc A chung
=>ΔABD đồng dạng với ΔACE
b: Xét ΔHEB vuông tại E và ΔHDC vuông tại D có
góc EHB=góc DHC
=>ΔHEB đồng dạng với ΔHDC
=>HE/HD=HB/HC
=>HE*HC=HB*HD
c: Xét ΔAMC vuông tại M có MD vuông góc AC
nên AD*AC=AM^2
ΔANB vuông tại N có NE vuông góc AB
nên AE*AB=AN^2
=>AM=AN
Cho hình thang ABCD (CD>AB) với AB//CD và AB vuông góc với BD. Hai đường chéo AC và BD cắt nhau tại G. Trên đường thẳng vuông góc với AC tại C lấy điểm E sao cho CE=AG và đoạn thẳng GE không cắt đường thẳng CD. Trên đoạn thẳng DC lấy điểm F sao cho DF=GB
a) Chứng minh tam giác FDG đồng dạng với tam giác ECG
b) Chứng minh: GF vuông góc với EF
cho đoạn thẳng BD và CE cắt nhau tại A : 2tia phân giác của góc DEC và góc ABC cắt nhau tại O. cmr góc BOE=(DEC+ABC):2
Cho tam giác ABC (AB < AC). Hai đường cao BD và CE cắt nhau tại H
a) So sánh góc BAH và góc CAH
b) So sánh 2 đoạn thẳng BD và CE
(Bạn tự vẽ hình)
a) Gọi AH giao BC tại điểm F. H là trực tâm của tam giác ABC => AH vuông góc với BC tại F.
Xét tam giác ABC: AF vuông góc BC, AB<AC => BF<CF (Quan hệ đường xiên, hình chiếu)
Xét tam giác AFB và tam giác AFC có:
Cạnh AF chung
^AFB=^AFC=90o => ^BAF < ^CAF (Quan hệ giữa góc và cạnh đối diện trong 2 tam giác)
BF<CF (cmt)
^BAF < ^CAF hay ^BAH<^CAH (đpcm)
b) Tam giác ABC có: AB<AC => ^ABC>^ACB hay ^EBC>^DCB.
Xét tam giác BEC và tam giác CDB có:
^BEC=^CDB=90o
Cạnh BC chung => CE>BD.
^EBC>^DCB (cmt)
Vậy CE>BD.
câu đầu sai rồi bạn ơi
sai bettt5tytret4e4tte4
Cho tam giác ABC.Có góc A =120 độ . các đường phân giác BD và CE cắt nhau tại O sao cho góc BOI = góc COK=30 độ.CM:
a)OI vuông góc OK
b) BE+CD<BC
mọi người làm giúp bạn mình nha!!!Làm ơn nha!!!
a: Xét ΔADB vuông tại D và ΔAEC vuông tại E có
góc DAB chung
=>ΔADB đồng dạngvới ΔAEC
=>AD/AE=AB/AC
=>AD*AC=AE*AB và AD/AB=AE/AC
b: Xét ΔADE và ΔABC có
AD/AB=AE/AC
góc DAE chung
=>ΔADE đồng dạng vói ΔABC
=>góc ADE=góc ABC
d: ΔADE đồng dạng với ΔABC
=>\(\dfrac{S_{ADE}}{S_{ABC}}=\left(\dfrac{AD}{AB}\right)^2=\dfrac{1}{4}\)
=>\(S_{ADE}=30\left(cm^2\right)\)