Tính diện tích hình tròn nội tiếp trong tam giác đều có cạnh a = 12,46 (cm).
Tính chu vi và diện tích hìn tròn nội tiếp tam giác đều có cạnh a=12,46
a) Tính diện tích hình tròn nội tiếp tam giác đều có độ dài mỗi cạnh 3cm b) Tính diệntích hình tròn ngoại tiếp ngũ giác đều có độ dài mỗi cạnh 4dm
Cho lăng trụ tam giác đều ABC.A’B’C’ có cạnh đáy bằng a và có đường cao h. Một hình trụ có các đường tròn đáy tiếp xúc với các cạnh của tam giác đáy được gọi là hình trụ nội tiếp trong lăng trụ. Hãy tính diện tích xung quanh của hình trụ nội tiếp đó.
Hình trụ nội tiếp trong lăng trụ tam giác đều có đường tròn đáy tiếp xúc tại trung điểm các cạnh của tam giác đáy. Gọi I là trung điểm của cạnh BC, r là bán kính đáy của hình trụ nội tiếp trong lăng trụ
Ta có:
Do đó:
Ta có diện tích xung quanh của hình trụ nội tiếp lăng trụ là:
Cho tứ diện ABCD đều cạnh 3a. Tính diện tích xung quanh của hình nón có đỉnh là A, đường tròn đáy là đường tròn nội tiếp tam giác BCD
A. 3 3 π a 2 .
B. 3 2 π a 2 2
C. 3 3 π a 2 2
D. 9 π a 2 4
Cho lăng trụ tam giác đều ABC.A'B'C' có cạnh đáy bằng a và có đường cao h
a) Một hình trục có các đường tròn đáy tiếp xúc với các cạnh của tam giác đáy được gọi là hình trụ nội tiếp trong lăng trụ. Hãy tính diện tích xung quanh của hình trụ nội tiếp đó ?
b) Gọi I là trung điểm của cạnh BC. Đường thẳng A'I cắt hình trụ nội tiếp nói trên theo một đoạn thẳng. Tính độ dài đoạn thẳng đó ?
Ta có : \(\dfrac{KM}{AA'}=\dfrac{IK}{IA}=\dfrac{2}{3}\Rightarrow KM=\dfrac{2}{3}h\)
Xét tam giác vuông IKM ta có : \(IM^2=IK^2+KM^2=\dfrac{3a^2}{9}+\dfrac{4h^2}{9}=\dfrac{3a^2+4h^2}{9}\)
Vậy :
\(IM=\dfrac{\sqrt{3a^2+4h^2}}{3}\)
Cho S.ABC là hình chóp tam giác đều có các cạnh bên bằng a và có góc giữa các mặt bên và mặt phẳng đáy là α. Hình nón đỉnh S có đường tròn đáy nội tiếp tam giác đều ABC gọi là hình nón nội tiếp hình nón đã cho. Hãy tính diện tích xung quanh của hình nón này theo a và α
Gọi I là trung điểm của cạnh BC và O là tâm của tam giác đều ABC. Theo giả thiết ta có SA = SB = SC = a và ∠ SIO = α. Đặt OI = r, SO = h, ta có AO = 2r và
Do đó a 2 = r 2 tan 2 α + 4 r 2 = r 2 tan 2 α + 4
Vậy
Hình nón nội tiếp có đường sinh là :
Diện tích xung quanh của hình nón nội tiếp hình chóp S.ABC là:
Thiết diện qua trục của một hình nón tròn xoay là tam giác đều, cạnh a. Tính tỉ số thể tích của hình cầu ngoại tiếp và hình cầu nội tiếp hình nón.
A. 2
B. 2
C. 4
D. 8
Thiết diện qua trục của một hình nón tròn xoay là tam giác đều, cạnh a. Tính tỉ số thể tích của hình cầu ngoại tiếp và hình cầu nội tiếp hình nón
A. 2
B. 2
C. 4
D. 8
Ta có:
V 1 V 2 = a 3 2 2 a 3 6 2 = 4
Đáp án C
Cho hình chóp tam giác đều S.ABC có AB = a, cạnh bên SA tạo với đáy một góc 60 0 . Một hình nón có đỉnh là S, đáy là hình tròn nội tiếp tam giác ABC. Tính diện tích xung quanh S x q của hình nón đã cho.
A. S x q = π 39 9
B. S x q = 4 π 3
C. S x q = 4 π
D. S x q = π 13 3