1/1x3+1/2x4+1/3x5+...+1/97x99+1/98x100-49/99
Chứng minh : A = 1/1x3 + 1/2x4 + 1/3x5 + 1/4x6 + ... + 1/97x99 + 1/98x100 < 3/4
Ta có :
\(A=\frac{1}{1.3}+\frac{1}{2.4}+\frac{1}{3.5}+\frac{1}{4.6}+...+\frac{1}{97.99}+\frac{1}{98.100}\)
\(A=\frac{1}{2}.\left(1-\frac{1}{3}\right)+\frac{1}{2}.\left(\frac{1}{2}-\frac{1}{4}\right)+\frac{1}{2}.\left(\frac{1}{3}-\frac{1}{5}\right)+\frac{1}{2}.\left(\frac{1}{4}-\frac{1}{6}\right)+...+\frac{1}{2}.\left(\frac{1}{97}-\frac{1}{99}\right)+\frac{1}{2}.\left(\frac{1}{98}-\frac{1}{100}\right)\)
\(A=\frac{1}{2}.\left(1-\frac{1}{3}+\frac{1}{2}-\frac{1}{4}+\frac{1}{3}-\frac{1}{5}+\frac{1}{4}-\frac{1}{6}+...+\frac{1}{97}-\frac{1}{99}+\frac{1}{98}-\frac{1}{100}\right)\)
\(A=\frac{1}{2}.\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{97}+\frac{1}{98}-\frac{1}{3}-\frac{1}{4}-\frac{1}{5}-\frac{1}{6}-...-\frac{1}{99}-\frac{1}{100}\right)\)
\(A=\frac{1}{2}.\left(1+\frac{1}{2}-\frac{1}{99}-\frac{1}{100}\right)< \frac{1}{2}.\left(1+\frac{1}{2}\right)=\frac{3}{4}\)
Cho S=1/1x3+1/2x4+1/3x5+..............+1/97x99+1/98x100
So sánh S với 1
\(S=\frac{1}{1.3}+\frac{1}{2.4}+\frac{1}{3.5}+...+\frac{1}{97.99}+\frac{1}{98.100}\)
\(S< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{97.98}+\frac{1}{98.99}\)
\(S< 1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{97}-\frac{1}{98}+\frac{1}{98}-\frac{1}{99}\)
\(S< 1-\frac{1}{99}< 1\)
=> S < 1
\(\frac{1}{1x3}\)-\(\frac{1}{2x4}\)+\(\frac{1}{3x5}\)-\(\frac{1}{4x6}\)+.............+\(\frac{1}{97x99}\)-\(\frac{1}{98x100}\)
Câu 1:
A= 2^2/1x3+3^2/2x4+4^2/3x5+...+99^2/98x100
\(A=\frac{2^2}{1.3}+\frac{3^2}{2.4}+\frac{4^2}{3.5}+...+\frac{99^2}{98.100}\)
\(A=\frac{2.2}{1.3}+\frac{3.3}{2.4}+\frac{4.4}{3.5}+...+\frac{99.99}{98.100}\)
\(A=\frac{2}{1}+\frac{99}{100}\)
\(A=\frac{200}{100}+\frac{99}{100}=\frac{299}{100}\)
Hok tốt
1. tìm các chữ số a,b,c thoả mãn
a) ab + bc + ca = abc
b) abc + bc + a = 874
2. tính các tổng sau
A= 1x2+2x3+3x4+.....+99x100
B=1x99+2x98+3x97+.....+98x2+99x3
C=1x3=2x4+3x5+....+97x99+98x100
mn làm củ thể ra lun nha
mk đg cân gấp cảm ơn
Tính tổng :
A =5+10+15+ . . . . . + 2015+2020
B = 2/1x3 + 2/3x5 + 2/5x7 + . . . . . + 2/99x101
C = 1/2x4 + 1/4x6 + 1/6x8 + . . . . . + 1/98x100
Giải nhanh giúp mk nha ! ^.^
a) Số số hạng của dãy A là: (2020-5):2+1 = 404 (số)
Tổng A là: (2020+5)x404:2=409050
b) \(B=\frac{2}{1\times3}+\frac{2}{3\times5}+....+\frac{2}{99\times101}\)
\(=1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+....+\frac{1}{99}-\frac{1}{101}\)
\(=1-\frac{1}{101}=\frac{100}{101}\)
c) \(C=\frac{1}{2\times4}+\frac{1}{4\times6}+\frac{1}{6\times8}+...+\frac{1}{98\times100}\)
\(=\frac{1}{2}\times\left(\frac{2}{2\times4}+\frac{2}{4\times6}+\frac{2}{6\times8}+....+\frac{2}{98\times100}\right)\)
\(=\frac{1}{2}\times\left(\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{6}+....+\frac{1}{98}-\frac{1}{100}\right)\)
\(=\frac{1}{2}\times\left(1-\frac{1}{100}\right)=\frac{1}{2}\times\frac{99}{100}=\frac{99}{200}\)
Vậy .....
A = 5 + 10 + 15 + ... + 2015 + 2020
Số số hạng là : 404
A = 409050
\(B=\frac{2}{1\cdot3}+\frac{2}{3\cdot5}+\frac{2}{5\cdot7}+...+\frac{2}{99\cdot101}\)
\(B=1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{99}-\frac{1}{101}\)
\(B=1-\frac{1}{101}=\frac{101-1}{101}=\frac{100}{101}\)
\(C=\frac{1}{2\cdot4}+\frac{1}{4\cdot6}+\frac{1}{6\cdot8}+...+\frac{1}{98\cdot100}\)
\(C=\frac{1}{2}\cdot\left(\frac{1}{2}-\frac{1}{4}\right)+\frac{1}{2}\cdot\left(\frac{1}{4}-\frac{1}{6}\right)+\frac{1}{2}\cdot\left(\frac{1}{6}-\frac{1}{8}\right)+...+\frac{1}{2}\cdot\left(\frac{1}{98}-\frac{1}{100}\right)\)
\(C=\frac{1}{2}\cdot\left(\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{6}+\frac{1}{6}-\frac{1}{8}+...+\frac{1}{98}-\frac{1}{100}\right)\)
\(C=\frac{1}{2}\cdot\left(\frac{1}{2}-\frac{1}{100}\right)=\frac{1}{2}\cdot\frac{49}{100}=\frac{49}{200}\)
1/1x3+1/3x5+......+1/97x99 = ?
\(\frac{1}{1x3}+\frac{1}{3x5}+....+\frac{1}{97x99}\)=S
\(2S=\frac{3-1}{1x3}+\frac{5-3}{3x5}+...+\frac{99-97}{97x99}\)
\(2S=1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+....+\frac{1}{97}-\frac{1}{99}=1-\frac{1}{99}=\frac{98}{99}\)
\(S=\frac{2S}{2}=\frac{49}{99}\)
1/1x3 + 1/3x5 + 1/5x7 + .... + 1/97x99
Đặt S là biểu thức trên
\(\Rightarrow S=\frac{1}{2}\left(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+........+\frac{2}{97.99}\right)\)
\(\Rightarrow S=\frac{1}{2}\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-.........-\frac{1}{97}+\frac{1}{97}-\frac{1}{99}\right)\)
\(\Rightarrow S=\frac{1}{2}\left(1-\frac{1}{99}\right)\)
\(\Rightarrow S=\frac{1}{2}\left(\frac{99}{99}-\frac{1}{99}\right)\)
\(\Rightarrow S=\frac{1}{2}.\frac{98}{99}\)
\(\Rightarrow S=\frac{49}{99}\)
Vậy biểu thức trên có giá trị là \(\frac{49}{99}\)
\(\frac{1}{1\times3}+\frac{1}{3\times5}+\frac{1}{5\times7}+...+\frac{1}{97\times99}\)
\(=\frac{1}{2}\times\left(\frac{1}{1\times3}+\frac{1}{3\times5}+\frac{1}{5\times7}+....+\frac{1}{97\times99}\right)\)
\(=\frac{1}{2}\times\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{97}-\frac{1}{99}\right)\)
\(=\frac{1}{2}\times\left(1-\frac{1}{99}\right)\)
\(=\frac{1}{2}\times\frac{98}{99}\)
\(=\frac{49}{99}\)
\(\frac{1}{1x3}+\frac{1}{3x5}+\frac{1}{5x7}+...+\frac{1}{97x99}\)
\(=\frac{1}{2}x(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{97}-\frac{1}{99})\)
\(=\frac{1}{2}x\left(1-\frac{1}{99}\right)\)
\(=\frac{1}{2}x\frac{98}{99}\)
\(=\frac{49}{99}\)
Bài 1:Áp dụng phương pháp hoặc kết quả ví dụ 111 để tính các biểu thức sau:
a) A=1x3+2x4+3x5+...+97x99+98x100
b B=1x2-3+2x3x4+3x4x5+...+48x49+50
Bài 2: Chứng minh rằng \(\dfrac{1}{5}+\dfrac{1}{7}+\dfrac{1}{9}+...+\dfrac{1}{101}\) không phải là số tự nhiên
Các bạn giúp mình nha. Nhanh nha.
\(A=1.3+2.4+3.5+.............+97.99+98.100\)
\(A=\left(2-1\right)\left(2+1\right)+\left(3-1\right)\left(3+1\right)+.............+\left(99-1\right)\left(99+1\right)\)
\(A=2^2-1+3^2-1+..............+99^2-1\)
\(A=1+2^2+3^2+............+99^2-99\)
Mà :
\(1+2+2^2+...........+n^2=\dfrac{\left(n+1\right)\left(n+2\right)}{6}\)
\(\Rightarrow A=\dfrac{99\left(99+1\right)\left(99+2\right)}{6}-99=\dfrac{99.100.101}{6}-99\)
\(A=166650-99=166551\)
~ Học tốt ~