\(A=1.3+2.4+3.5+.............+97.99+98.100\)
\(A=\left(2-1\right)\left(2+1\right)+\left(3-1\right)\left(3+1\right)+.............+\left(99-1\right)\left(99+1\right)\)
\(A=2^2-1+3^2-1+..............+99^2-1\)
\(A=1+2^2+3^2+............+99^2-99\)
Mà :
\(1+2+2^2+...........+n^2=\dfrac{\left(n+1\right)\left(n+2\right)}{6}\)
\(\Rightarrow A=\dfrac{99\left(99+1\right)\left(99+2\right)}{6}-99=\dfrac{99.100.101}{6}-99\)
\(A=166650-99=166551\)
~ Học tốt ~