Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Vũ Minh Nhật
Xem chi tiết
Lê Hữu Thái Vũ
26 tháng 6 2021 lúc 20:20

tao đẹp trai thì có gì sai

Khách vãng lai đã xóa
Hoàng Khôi Phong  ( ɻɛɑm...
29 tháng 6 2021 lúc 14:38

bài này mà là âm nhạc???

Khách vãng lai đã xóa
nguyễn vũ hồng phúc
Xem chi tiết
Cao Nguyễn Thành Hoàng
Xem chi tiết
Toàn Quyền Nguyễn
Xem chi tiết
vongola
7 tháng 1 2017 lúc 20:21

x2=yz  => \(\frac{x}{y}=\frac{z}{x}\)

\(z^2=xy\Rightarrow\frac{z}{x}=\frac{y}{z}\)

\(\Rightarrow\frac{x}{y}=\frac{z}{x}=\frac{y}{z}\)

áp dụng ... ta có

\(\frac{x}{y}=\frac{z}{x}=\frac{y}{z}=\frac{x+z+y}{y+x+z}=1\)

\(\frac{x}{y}=1\Rightarrow x=y\)

\(\frac{z}{x}=1\Rightarrow z=x\)

=>x=y=z

Toàn Quyền Nguyễn
Xem chi tiết
Nữ Thần Mặt Trăng
24 tháng 5 2020 lúc 22:34

Ta có x2=yz nên x/y=z/x(1)

y2=xz nên x/y=y/z(2)

z2=xy nên z/x=y/z(3)

Từ 1,2,3 suy ra x/y=z/x=y/z(4)

áp dụng t/c dãy tỉ số bằng nhau vào 4 có

x/y=z/x=y/z=x+y+z/x+y+z

vì x, y,z khác 0 nên x+y+z Khác 0

suy ra x+y+z/z+x+y=1

suy ra x/y=z/x=y/z=1

suy ra x=y; x=z; y=z

Khách vãng lai đã xóa
Nữ Thần Mặt Trăng
24 tháng 5 2020 lúc 22:37

xz=yx" role="presentation" style="border:0px; box-sizing:border-box; direction:ltr; display:inline; float:none; line-height:normal; margin:0px; max-height:none; max-width:none; min-height:0px; min-width:0px; overflow-wrap:normal; padding:0px; position:relative; white-space:nowrap; word-spacing:normal" class="MathJax">yx=zy" role="presentation" style="border:0px; box-sizing:border-box; direction:ltr; display:inline; float:none; line-height:normal; margin:0px; max-height:none; max-width:none; min-height:0px; min-width:0px; overflow-wrap:normal; padding:0px; position:relative; white-space:nowrap; word-spacing:normal" class="MathJax">zy=xz" role="presentation" style="border:0px; box-sizing:border-box; direction:ltr; display:inline; float:none; line-height:normal; margin:0px; max-height:none; max-width:none; min-height:0px; min-width:0px; overflow-wrap:normal; padding:0px; position:relative; white-space:nowrap; word-spacing:normal" class="MathJax">xz=yx=zy" role="presentation" style="border:0px; box-sizing:border-box; direction:ltr; display:inline; float:none; line-height:normal; margin:0px; max-height:none; max-width:none; min-height:0px; min-width:0px; overflow-wrap:normal; padding:0px; position:relative; white-space:nowrap; word-spacing:normal" class="MathJax">xz=yx=zy=x+y+zz+x+y=1" role="presentation" style="border:0px; box-sizing:border-box; direction:ltr; display:inline; float:none; line-height:normal; margin:0px; max-height:none; max-width:none; min-height:0px; min-width:0px; overflow-wrap:normal; padding:0px; position:relative; white-space:nowrap; word-spacing:normal" class="MathJax">xz=1⇒x=z" role="presentation" style="border:0px; box-sizing:border-box; direction:ltr; display:inline; float:none; line-height:normal; margin:0px; max-height:none; max-width:none; min-height:0px; min-width:0px; overflow-wrap:normal; padding:0px; position:relative; white-space:nowrap; word-spacing:normal" class="MathJax">yx=1⇒y=x" role="presentation" style="border:0px; box-sizing:border-box; direction:ltr; display:inline; float:none; line-height:normal; margin:0px; max-height:none; max-width:none; min-height:0px; min-width:0px; overflow-wrap:normal; padding:0px; position:relative; white-space:nowrap; word-spacing:normal" class="MathJax">zy=1⇒z=y" role="presentation" style="border:0px; box-sizing:border-box; direction:ltr; display:inline; float:none; line-height:normal; margin:0px; max-height:none; max-width:none; min-height:0px; min-width:0px; overflow-wrap:normal; padding:0px; position:relative; white-space:nowrap; word-spacing:normal" class="MathJax">zy=1⇒z=y" role="presentation" style="border:0px; box-sizing:border-box; direction:ltr; display:inline; float:none; line-height:normal; margin:0px; max-height:none; max-width:none; min-height:0px; min-width:0px; overflow-wrap:normal; padding:0px; position:relative; white-space:nowrap; word-spacing:normal" class="MathJax">T

Khách vãng lai đã xóa
Thảo Minh Donna
Xem chi tiết
Mai Ngọc
6 tháng 2 2016 lúc 10:30

Ta có: x2=yz,y2=xz,z2=xy

=>x2+y2+z2=yz+xz+xy

=>2x2+2y2+2z2=2xy+2yz+2xz

=>2x2+2y2+2z2-2xy-2yz-2xz=0

=>(2x2-2xy)+(2y2-2yz)+(2z2-2xz)=0

=>(x2-2xy+x2)+(y2-2yz+y2)+(z2-2xz+z2)=0

=>(x-y)2+(y-z)2+(z-x)2=0

Ta thấy : (x-y)2>0 với mọi x,y

(y-z)2>0 với mọi y,z

(z-x)2>0 với mọi x,z

=>(x-y)2+(y-z)2+(z-x)2>0 với mọi x,y,z

Mà (x-y)2+(y-z)2+(z-x)2=0

=>(x-y)2=(y-z)2=(z-x)2=0

=>x-y=y-z=z-x=0

=>x=y=z

Nguyen nhat dinh
Xem chi tiết
Nguyễn Tiến Dũng
Xem chi tiết
Trần Việt Linh
12 tháng 12 2016 lúc 21:50

\(\frac{2013x}{xy+2013x+2013}+\frac{y}{yz+y+2013}+\frac{z}{xz+z+1}\)

\(=\frac{x^2yz}{xy+x^2yz+xyz}+\frac{y}{yz+y+xyz}+\frac{z}{xz+z+1}\)

\(=\frac{xz}{1+xz+z}+\frac{1}{z+1+xz}+\frac{z}{xz+z+1}\)

\(=\frac{xz+z+1}{xz+z+1}=1\)

=>đpcm

soyeon_Tiểubàng giải
12 tháng 12 2016 lúc 21:50

2013x/xy+2013x+2013 + y/yz+y+2013 + z/xz+z+1

= xyz.x/xy+xyz.x+xyz + y/yz+y+xyz + z/xz+z+1

= xz/1+xz+z + 1/z+1+xz + z/xz+z+1

= xz+1+x/1+xz+x = 1 (đpcm)

Lightning Farron
12 tháng 12 2016 lúc 21:52

Thay xyz=2013 vào ta có:

\(\frac{xyz\cdot x}{xy+xyz\cdot x+xyz}+\frac{y}{yz+y+xyz}+\frac{z}{xz+z+1}\)

\(=\frac{x^2yz}{xy+x^2yz+xyz}+\frac{y}{y\left(z+1+xz\right)}+\frac{z}{xz+z+1}\)

\(=\frac{xy\cdot xz}{xy\left(xz+z+1\right)}+\frac{1}{xz+z+1}+\frac{z}{xz+z+1}\)

\(=\frac{xz}{xz+z+1}+\frac{1}{xz+z+1}+\frac{z}{xz+z+1}\)

\(=\frac{xz+1+z}{xz+z+1}=1\) (Đpcm)

slyn
Xem chi tiết
Nguyễn Hoàng Minh
5 tháng 12 2021 lúc 15:23

\(x^2+y^2-z^2=x^2+\left(y-z\right)\left(y+z\right)=x^2-x\left(y-z\right)=x\left(x-y+z\right)=x\left(-y-y\right)=-2xy\)

Tương tự \(x^2+z^2-y^2=-2xz;y^2+z^2-x^2=-2yz\)

Cộng VTV:

\(\Leftrightarrow\text{Biểu thức }=\dfrac{xy}{-2xy}+\dfrac{xz}{-2xz}+\dfrac{yz}{-2yz}=-\dfrac{1}{8}\)