Giải các pt sau:
\(\sqrt{x+2}=\frac{x^2+2x+2}{2x+1}\)
GIẢI CÁC PT SAU:
\(\sqrt{x^2+5x+1}=\sqrt{x+1}\)
\(\sqrt{x^2+2x+4}=\sqrt{2-x}\)
\(\sqrt{2x+4}-\sqrt{2-x}=0\)
Lời giải:
1. ĐKXĐ: $x\geq \frac{-5+\sqrt{21}}{2}$
PT $\Leftrightarrow x^2+5x+1=x+1$
$\Leftrightarrow x^2+4x=0$
$\Leftrightarrow x(x+4)=0$
$\Rightarrow x=0$ hoặc $x=-4$
Kết hợp đkxđ suy ra $x=0$
2. ĐKXĐ: $x\leq 2$
PT $\Leftrightarrow x^2+2x+4=2-x$
$\Leftrightarrow x^2+3x+2=0$
$\Leftrightarrow (x+1)(x+2)=0$
$\Leftrightarrow x+1=0$ hoặc $x+2=0$
$\Leftrightarrow x=-1$ hoặc $x=-2$
3.
ĐKXĐ: $-2\leq x\leq 2$
PT $\Leftrightarrow \sqrt{2x+4}=\sqrt{2-x}$
$\Leftrightarrow 2x+4=2-x$
$\Leftrightarrow 3x=-2$
$\Leftrightarrow x=\frac{-2}{3}$ (tm)
giải bất pt sau:
\(\frac{\sqrt{x^{2^{ }}-x-2}}{\sqrt{x-1}}+\sqrt{x-1}< \frac{2x+1}{\sqrt{x-1}}\)
Dk 1<x<2
√x^2 -x -2<x+2
5x+6>0
X > -6/5
Bpt vô nghiệm
giải các pt sau
a) \(\sqrt{2x^2+x+1}+\sqrt{x^2-x+1}=3x\)
b) \(x^2+\sqrt[3]{x^4-x^2}=2x+1\)
c) \(2x+\frac{x-1}{x}=\sqrt{1-\frac{1}{x}}+3\sqrt{x-\frac{1}{x}}\)
mn giúp mk vs ạ
mình làm nốt câu còn lại ok
b) ta thấy x = 0 không là nghiệm của phương trình
chia cả 2 vế cho x khác 0, ta được :
\(\left(x-\frac{1}{x}\right)+\sqrt[3]{x-\frac{1}{x}}=2\)
đặt \(t=\sqrt[3]{x-\frac{1}{x}}\)
Ta có : \(t^3+t-2=0\Leftrightarrow\left(t-1\right)\left(t^2+t+2\right)=0\Leftrightarrow t=1\)
Khi đó : \(\sqrt[3]{x-\frac{1}{x}}=1\Leftrightarrow x-\frac{1}{x}=1\Leftrightarrow x=\frac{1\pm\sqrt{5}}{2}\)
Vậy ...
a) Từ phương trình đã cho ta có: \(x\ge0\)
Rõ ràng x=0 không thỏa mãn phương trình đã cho nên x>0
Nhân với liên hợp của vế trái ta được:
\(\sqrt{2x^2+x+1}-\sqrt{x^2-x+1}=\frac{x+2}{3}\)
Kết hợp với phương trình đã cho ta có:
\(\sqrt{2x^2+x+1}=\frac{5x+1}{3}\)
Giải phương trình này được nghiệm \(x=\frac{-19+3\sqrt{65}}{14}\)
a) \(\Leftrightarrow2x^2+x+1+x^2-x+1+2\sqrt{\left(2x^2+x+1\right)\left(x^2-x+1\right)}=9x^2\)
\(\Leftrightarrow2\sqrt{2x^4-x^3+2x^2+1}=6x^2-2\)
\(\Leftrightarrow2x^4-x^3+2x^2+1=9x^4-6x^2+1\)
\(\Leftrightarrow7x^4+x^3-8x^2=0\)
\(\Leftrightarrow7x^2+x-8=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=1\\x=\frac{-8}{7}\end{cases}}\)
a) tìm các số nguyên x,t thỏa mãn 2y(2x2-1) - 2x(2y2-1)+1=x3y3
b) giải pt 2x2 +2x+1=(2x+3)(\(\sqrt{x^2+x+2}\)- 1)
c) giải hệ pt \(\hept{\begin{cases}x^2+y^2+\frac{8xy}{x+y}=16\\\sqrt{x^2+12}+\frac{5}{2}\sqrt{x+y}=3x+\sqrt{x^2+5}\end{cases}}\)
giải các PT sau :
a) \(\left|2x+3\right|-\left|x\right|+\left|x-1\right|=2x+4\)
b) \(\sqrt{x}-\dfrac{4}{\sqrt{x+2}}+\sqrt{x+2}=0\)
c) \(\sqrt{x+\sqrt{2x-1}}+\sqrt{x-\sqrt{2x-1}}=\sqrt{2}\)
d) \(x+\sqrt{x+\dfrac{1}{2}+\sqrt{x+\dfrac{1}{4}}}=4\)
e) \(\sqrt{4x+3}+\sqrt{2x+1}=6x+\sqrt{8x^2+10x+3}-16\)
f)\(\sqrt[3]{x-2}+\sqrt{x+1}=3\)
GIÚP MÌNH VỚI MÌNH ĐANG CẦN GẤP
giải PT sau: \(\sqrt{x^2-x+\frac{1}{4}}=2x^3-x^2+2x-1\)
GIẢI CÁC PT SAU:
\(\sqrt{5x+10}=8-x\)
\(\sqrt{4x^2+x-12}=3x-5\)
\(\sqrt{x^2-2x+6}=2x-3\)
\(\sqrt{3x^2-2x+6}+3-2x=0\)
Câu 1 : Giải pt: \(8x^2+\sqrt{\frac{1}{x}}=\frac{5}{2}\)
Câu 2: Giải pt: \(\frac{2x^2}{\left(3-\sqrt{9+2x}\right)^2}=x+21\\\)
giải pt sau
a, \(x^2+3-\sqrt{2x^2-3x+2}=\frac{3}{2}\left(x+4\right)\)
b, 2(1-x) \(\sqrt{x^2+2x-1}=x^2-2x-1\)
c, \(x^3+1=2\sqrt[3]{2x-1}\)
d, \(x^2-3x+1=\frac{-\sqrt{3}}{3}\sqrt{x^4+x^2+1}\)
TXĐ: D=R
\(\Leftrightarrow2x^2+6-2\sqrt{2x^2-3x+2}=3\left(x+4\right)\)
\(\Leftrightarrow\frac{2x^2-3x-6}{2}-4=\sqrt{2x^2-3x+2}-4\)
\(\Leftrightarrow\frac{2x^2-3x-14}{2}=\frac{2x^2-3x-14}{\sqrt{2x^2-3x+2}+4}\)
\(\left[{}\begin{matrix}2x^2-3x-14=0\\\frac{1}{2}=\frac{1}{\sqrt{2x^2-3x+2}+4}\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x=-2\\x=\frac{7}{2}\end{matrix}\right.\\\text{ pt vô nghiệm}\end{matrix}\right.\)
Vậy ....