Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Đỗ Nguyên Hào
Xem chi tiết
Anh Kiệt Thừa
11 tháng 9 2023 lúc 20:31

x^2 - x(y+5)=-4y-9

=> x^2-xy-5x+4y+9=0

=>(x^2-xy)-4(x-y)-x+9=0

=>x(x-y)-4(x-y)-(x-4)+5=0

=>(x-4).(x-y-1)=-5

Vì x-4;x-y-1 thuộc Z =>x-4;x-y-1 thuộc ước của -5

=>....

Nguyễn Ngọc Diệp
Xem chi tiết
Nguyễn Ngọc Anh Minh
6 tháng 10 2023 lúc 9:50

\(\Leftrightarrow x^2-xy-5x+4y+9=0\)

\(\Leftrightarrow\left(x^2-xy\right)-\left(4x-4y\right)-x+9=0\)

\(\Leftrightarrow x\left(x-y\right)-4\left(x-y\right)-x+9=0\)

\(\Leftrightarrow\left(x-y\right)\left(x-4\right)-\left(x-4\right)+5=0\)

\(\Leftrightarrow\left(x-4\right)\left(x-y-1\right)=-5\)

Do \(x;y\in Z\Rightarrow\left(x-4\right);\left(x-y-1\right)\in Z\)

Ta có các trường hợp sau

+ TH1:

\(\left\{{}\begin{matrix}x-4=1\\x-y-1=-5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=5\\y=9\end{matrix}\right.\)

+ TH2:

\(\left\{{}\begin{matrix}x-4=-1\\x-y-1=5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=3\\y=-3\end{matrix}\right.\)

+ TH3:

\(\left\{{}\begin{matrix}x-4=5\\x-y-1=-1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=9\\y=9\end{matrix}\right.\)

+ TH4:

\(\left\{{}\begin{matrix}x-4=-5\\x-y-1=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-1\\y=-3\end{matrix}\right.\)

Big City Boy
Xem chi tiết
Thu Thao
10 tháng 1 2021 lúc 15:03

\(\Leftrightarrow x^2+4y^2+4xy-2\left(x+2y\right)+1=5-4y^2\)

\(\Leftrightarrow\left(x+2y+1\right)^2=5-4y^2\)

TH1 : \(4y^2=0\)

Pt \(\Leftrightarrow\left(x+2y+1\right)^2=5\)Mà 5 không là số chính phương.

=> Không có số nguyên x nào thỏa mãn.

TH2 : \(4y^2>0\)

Do \(\left(x+2y+1\right)^2\ge0\Rightarrow5\ge4y^2\)

Mà y nguyên

=> \(4y^{2}=4\)

=> y ∈ {1 ; -1}

Với y = 1

=> x + 3 = 1

=> x = -2 (tm)Với y = -1

=> x - 1 = 1

=> x = 2 (tm)Vậy..

Thanh Tu Nguyen
Xem chi tiết
Mai Vân Anh
Xem chi tiết
no name
Xem chi tiết
viet cute
7 tháng 3 2017 lúc 23:07

CHO TEN ROI NOI

no name
7 tháng 3 2017 lúc 23:34

ngọc anh ạ

Thắng Nguyễn
8 tháng 3 2017 lúc 11:39

\(x^2-y^2+2x-4y-10=0\)

\(\Rightarrow\left(x^2+2x+1\right)-\left(y^2+4y+4\right)-7=0\)

\(\Rightarrow\left(x+1\right)^2-\left(y+2\right)^2=7\)

\(\Rightarrow\left(x+1+y+2\right)\left(x+1-y-2\right)=4\)

\(\Rightarrow\left(x-y-1\right)\left(x+y+3\right)=7\)

Vì \(x,y\) nguyên dương nên \(x+y+3>x-y-1>0\)

\(\Rightarrow\hept{\begin{cases}x+y+3=7\\x-y-1=1\end{cases}}\)\(\Rightarrow\hept{\begin{cases}x=3\\y=1\end{cases}}\)

Ngô Ngọc Anh
Xem chi tiết
Nguyễn Ý Nhi
6 tháng 8 2020 lúc 17:36

Để cho gọn, đặt {x2=ay2=b

(a+4b+28)2−17a2−17b2=238b+833

\(\Leftrightarrow\)a2+16b2+784+8ab+56a+224b−17a2−17b2=238b+833

\(\Leftrightarrow\)16a2+b2+49−8ab−56a+14b=0

\(\Leftrightarrow\)(4a−b−7)2=0 ⇔4a−b−7=0⇔4x2−y2−7=0

\(\Leftrightarrow\)(2x−y)(2x+y)=7

Do 2x+y>2x−y với mọi x, y nguyên dương và 2x+y>0 với mọi x, y nguyên dương

\(\Rightarrow\){2x−y=12x+y=7 \(\Rightarrow\){x=2y=3

Vậy pt có cặp nghiệm nguyên dương duy nhất (x;y)=(2;3)

#Shinobu Cừu

Khách vãng lai đã xóa
May Dien
Xem chi tiết
Nguyen Ngoc Minh Ha
Xem chi tiết