[x – 5] 2016 + [x – 5] 2018
x+5/2015+x+4/2016=x+3/2016+x+2/2018
Sửa lại đề:\(\frac{x+5}{2015}+\frac{x+4}{2016}=\frac{x+3}{2017}+\frac{x+2}{2018}\)
\(\frac{x+5}{2015}+1+\frac{x+4}{2016}+1=\frac{x+3}{2017}+1+\frac{x+2}{2018}+1\)
\(\frac{x+2020}{2015}+\frac{x+2020}{2016}=\frac{x+2020}{2017}+\frac{x+2020}{2018}\)
\(\frac{x+2020}{2015}+\frac{x+2020}{2016}-\frac{x+2020}{2017}-\frac{x+2020}{2018}=0\)
\(\left(x+2020\right)\left(\frac{1}{2015}+\frac{1}{2016}-\frac{1}{2017}-\frac{1}{2018}\right)=0\)
Do 1/2015+1/2016-1/2017-1/2018 khác 0
=>x+2020=0=>x=-2020
Tìm số tự nhiên x, biết rằng:
(x – 5)2016 = (x – 5)2018
(x – 5)2016 = (x – 5)2018
=> (x – 5)2018 – (x – 5)2016 = 0
=> (x – 5)2016.[(x – 5)2 – 1] = 0
=> x – 5 = 0 hoặc x – 5 = 1 hoặc x – 5 = -1
=> x = 5 hoặc x = 6 hoặc x = 4 (Thỏa mãn x ∈ N).
Vậy x ∈ {4; 5; 6}.
a)\(\frac{x+2015}{5}+\frac{x+2016}{4}=\frac{x+2017}{3}+\frac{x+2018}{2}\)
b)\(\frac{x+2015}{5}+\frac{x+2016}{6}=\frac{x+2017}{7}+\frac{x+2018}{8}\)
a) \(\frac{x+2015}{5}+\frac{x+2016}{4}=\frac{x+2017}{3}+\frac{x+2018}{2}\)
\(\Leftrightarrow\frac{x+2015}{5}+\frac{5}{5}+\frac{x+2016}{4}+\frac{4}{4}=\frac{x+2017}{3}+\frac{3}{3}+\frac{x+2018}{2}+\frac{2}{2}\)
\(\Leftrightarrow\frac{x+2020}{5}+\frac{x+2020}{4}=\frac{x+2020}{3}+\frac{x+2002}{2}\)
\(\frac{x+2020}{5}+\frac{x+2020}{4}-\frac{x+2020}{3}-\frac{x+2020}{2}=0\)
\(\Leftrightarrow\left(x+2020\right).\left(\frac{1}{5}+\frac{1}{4}-\frac{1}{3}-\frac{1}{2}\right)=0\)
\(\Leftrightarrow x+2020=0\)
\(\Leftrightarrow x=-2020\)
Vậy : \(x=-2020\)
Chúc bạn học tốt !!
a) \(\frac{x+2015}{5}+\frac{x+2016}{4}=\frac{x+2017}{3}+\frac{x+2018}{2}\\ \left(\frac{x+2015}{5}+1\right)+\left(\frac{x+2016}{4}+1\right)=\left(\frac{x+2017}{3}+1\right)+\left(\frac{x+2018}{2}+1\right)\\ \frac{x+2020}{5}+\frac{x+2020}{4}=\frac{x+2020}{3}+\frac{x+2020}{2}\\ \frac{x+2020}{5}+\frac{x+2020}{4}-\frac{x+2020}{3}-\frac{x+2020}{2}=0\\ \left(x+2020\right)\left(\frac{1}{5}+\frac{1}{4}-\frac{1}{3}-\frac{1}{2}\right)=0\\ \Rightarrow x+2020=0\\ \Rightarrow x=-2020\)
Vậy x = -2020
b) \(\frac{x+2015}{5}+\frac{x+2016}{6}=\frac{x+2017}{7}+\frac{x+2018}{8}\\ \left(\frac{x+2015}{5}-1\right)+\left(\frac{x+2016}{6}-1\right)=\left(\frac{x+2017}{7}-1\right)+\left(\frac{x+2018}{8}-1\right)\\ \frac{x+2010}{5}+\frac{x+2010}{6}=\frac{x+2010}{7}+\frac{x+2010}{8}\\ \frac{x+2010}{5}+\frac{x+2010}{6}-\frac{x+2010}{7}-\frac{x+2010}{8}=0\\ \left(x+2010\right)\left(\frac{1}{5}+\frac{1}{6}-\frac{1}{7}-\frac{1}{8}\right)=0\\ \Rightarrow x+2010=0\\ \Rightarrow x=-2010\)
Vậy x = -2010
[x - 5 ] mũ 2016 = [x - 15 ] mũ 2018
a) x+2015 phần 5 + x+2016 phần 4= x+2017 phần 3 + x+2018 phần 2
b) x+2015 phần 5 + x+2016 phần 6= x+2017 phần 7+ x+2018 phần 8
Những cái chữ phần là viết theo dạng phân số mình quên viết các bạn giúp mình với thank
a) \(\frac{x+2015}{5}+\frac{x+2015}{6}=\frac{x+2015}{7}+\frac{x+2015}{8}\)
\(\frac{x+2015}{5}+\frac{x+2015}{6}-\frac{x+2015}{7}-\frac{x+2015}{8}=0\)
\(\left(x+2015\right).\left(\frac{1}{5}+\frac{1}{6}-\frac{1}{7}-\frac{1}{8}\right)=0\)
vì \(\frac{1}{5}+\frac{1}{6}-\frac{1}{7}-\frac{1}{8}\ne0\)
\(\Rightarrow\)x + 2015 = 0
\(\Rightarrow\)x = -2015
b) Tương tự
x+2015/5 + x+2016/4=x+2017/3 + x+2018/2
x+2015/5 + x+2016/4=x+2017/3 + x+2018/2
\(\Rightarrow\frac{x+2015}{5}+1+\frac{x+2016}{4}+1=\frac{x+2017}{3}+1+\frac{x+2018}{2}+1\)
\(\Rightarrow\frac{x+2020}{5}+\frac{x+2020}{4}=\frac{x+2020}{3}+\frac{x+2020}{2}\)
\(\Rightarrow\frac{x+2020}{5}+\frac{x+2020}{4}-\frac{x+2020}{3}-\frac{x+2020}{2}=0\)
\(\Rightarrow\left(x+2020\right)\left(\frac{1}{5}+\frac{1}{4}-\frac{1}{3}-\frac{1}{2}\right)=0\)
\(\Rightarrow x+2020=0\).Do \(\frac{1}{5}+\frac{1}{4}-\frac{1}{3}-\frac{1}{2}\ne0\)
\(\Rightarrow x=-2020\)
x+5/2015+x+4/2016+x+3/2017+x+2/2018
\(\left(x-5\right)^{2016}=\left(x-5\right)^{2018}\)
\(\left(x-5\right)^{2018}-\left(x-5\right)^{2016}=0\)
<=> \(\left(x-5\right)^{2016}\left[\left(x-5\right)^2-1\right]=0\)
<=> \(\orbr{\begin{cases}x-5=0\\\left(x-5\right)^2=1\end{cases}}\)<=>\(\orbr{\begin{cases}x=5\\x-5=\pm1\end{cases}}\)
Vậy x\(\in\){4,5,6}
<=>
\(\left(x-5\right)^{2016}=\left(x-5\right)^{2018}\)
\(\Rightarrow\left(x-5\right)^{2016}\left[1-\left(x-5\right)^2\right]=0\)
\(\Rightarrow\hept{\begin{cases}\left(x-5\right)^{2016}=0\\\left(x-5\right)^2=1-0=1\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}x-5=0\\x-5=1\\x-5=-1\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}x=5\\x=6\\x=4\end{cases}}\)
tim GTNN
|x + 2016| + 2017 / |x + 2016| + 2018
giup mik nha, cho 5 k