chứng minh 1/2^2+1/3^2+...+1/45^2 ko phải là số nguyên tố
chứng minh rằng:2^32+1 ko phải là số nguyên tố
Khi giải toán thì bạn sử dụng tất cả những kiến thức mà bạn có. Và rất quan trọng: bạn sử dụng tất cả những kinh nghiệm mà bạn tích lũy được. Nếu trong quá khứ bạn đã từng giải vấn đề a, b, c mà bây giờ bạn gặp vấn đề d và bằng kinh nghiệm của mình bạn "cảm thấy" là có thể đưa được về a, b hoặc c thì việc bạn phải làm chỉ là "cố" đưa d về a, b hoặc c. Nếu được thì coi như vấn đề d được giải quyết.
Chuyện kinh nghiệm mà bạn tích lũy thêm ngoài kiến thức trong nhà trường rất quan trọng. Vd. bạn hỏi tôi là cách cm pt nghiệm nguyên vô nghiệm như thế nào thì tôi chịu. Chuyện cm phải tùy từng th.vd. nhiều khi đơn giản là cmr với mỗi khoảng giá trị nào đó của các biến thì 1 vế là chẵn còn vế kia là lẻ thì rõ ràng pt không có nghiệm nguyên vì "hiển nhiên" số lẻ không thể bằng số chẵn được. Hoặc cmr với mỗi khoảng như thế thì 1 vế chia hết cho a còn vế kia không chia hết cho a. Hoặc 1 vế < a còn vế kia > a, và với khoảng khác thì 1 vế < b (thậm chí vế đó trước đó > a, tức là vế lớn hơn) còn vế kia > b. Hoặc 1 vế chính phương còn vế kia không chính phương. Tóm lại là có thể cmr với mỗi th của biến thì 2 vế không thể bằng nhau do những lý do khác nhau.
Cũng như cm số không chính phương thì có nhiều cách tùy từng th. vd. cm được là nó tận cùng là 2, 3, 7 hoặc 8. Hoặc cmr nó là số lẻ nhưng chia cho 4 dư 3 hoặc chia cho 8 dư 3, 5 hoặc 7. Hoặc cmr nó chia hết cho p^(2k + 1) với p nguyên tố nhưng không chia hết cho p^(2k + 2). Hoặc cmr k² < nó < (k + 1)² ...
Thậm chí nếu bạn phải thử xem liệu a = 2^32 + 1 có chia hết cho 3, 5, 7, ... hay không thì cũng mất không nhiều thời gian lắm. vd. chia cho 3: 2 chia cho 3 "dư" -1 => 2^32 chia cho 3 dư 1 => a không chia hết cho 3. Chia cho 5: 2^4 tận cùng bằng 6 => 2^32 tận cùng bằng 6 => a tận cùng bằng 7 nên không chia hết cho 5. vd. chia cho 509 nguyên tố: 2^9 = 512 chia cho 509 dư 3 => a chia cho 509 "dư" 3³ * 2^5 + 1 tức dư 356. Nhiều phép thử có thể "nhẩm" ngay trong đầu. Đấy là nói đến th khi ta không có chút kinh nghiệm gì cả mà chỉ "cần cù" thôi thì thời gian cũng không cần mất nhiều.
Nếu nói như bạn thì ngay cả những người tài giỏi nhiều khi cũng phải "mò". Không ai có thể đọc bài nào cũng thấy ngay là phải làm thế này thế này. Chỉ có điều họ có kiến thức và kinh nghiệm nhiều nên "lập tức" họ thu hẹp được phạm vi "mò mẫm". Trong khi bạn phải thử 1000 th thì họ có thể chỉ thử 2, 3 th. Và nhiều khi họ "nhìn" thấy ngay (cũng cần kiến thức, kinh nghiệm) là có thể đưa được về bài toán đã giải quyết trong quá khứ (trong khi bạn không có những bài toán trong quá khứ ấy). Mò ở đây không phải là mò bừa, không có ý tưởng nên ta cứ thử lần lượt từ a đến z. Nếu bạn gọi là mò thì cũng phải có ý tưởng chứ không phải làm bừa đâu.
----------------------
Nhà toán học vĩ đại Fécma đã từng cho rằng mọi số dạng 2^2^n + 1 (hiện nay gọi là số Fécma) với n là số tự nhiên đều là số nguyên tố (ông không cm vì tất nhiên không thể cm đươc. Ông chỉ "nghĩ" thế thôi). Sau này người ta đã thấy rằng điều đó không đúng. vd. nó đúng với n = 1, 2, 3, 4 nhưng không đúng với n = 5 vì 2^2^5 + 1 chia hết cho 641.
2^32 + 1 = 2^2^5 + 1 chia hết cho 641 và > 641 nên là hợp số.
Nếu bạn thử cm (không phải là bấm máy hay nhân chia tay) thì bạn thử cách sau xem:
2^32 + 1 = [1 + (1 + 2² + 2³ + ... + 2^31)] + 1
Sau đó bạn thử chia làm nhiều nhóm sao cho mỗi nhóm chia hết cho 641 = 2^9 + 2^7 + 1
Tất nhiên thử nhân và chia cho 641 cũng được vì số 2^32 = 4*(2^10)³ + 1 = 4*(1024)³ không phải là số cực lớn
Cho C = 1/11 + 1/12 = 1/13 +...+ 1/19
Chứng minh rằng C ko phải là số nguyên
b) Cho D = 2( 1/3 + 1/15 + 1/35 +...+1/n(n+2)) với n thuộc N*
Chứng minh rằng D ko phải lf số nguyên
c) Cho E = 1/3 + 1/4 + 1/5 + 2/7 + 2/9 + 2/11
Chứng minh rằng E ko phải là số nguyên
Bài khó quá, giúp mình nha!
1)Cho n là 1 số ko chia hết cho 3. Chứng minh rằng n.n chia 3 dư 1.
2)Cho p là số nguyên tố >3.Hỏi p^2+2003 là số nguyên tố hay hợp số?
câu 1 . ko biết
câu 2 . neu p > 3 thi dung la p^2 se la 1 so le
trong day so nguyen to chi co duy nhat 1 so chan do la 2
suy ra p^2 + 2003 se la 1 so chan (le + le bang chan )
tu do suy ra p^2+2003 la hop so
1, Ta có:
n.n = n2
Ta thấy 1 số chính phương chỉ chia 3 dư 0 hoặc 1 nên n2 chia 3 dư 0 hoặc 1
Mà n không chia hết cho 3 => n2 không chia hết cho 3
=> n2 chia 3 dư 1 hay n.n chia 3 dư 1 (ĐPCM)
1)Vì n không chia hết cho 3 nên n có dạng: 3k+1;3k+2
nên n*n=(3k+1)(3k+1)=3k(3k+1)+3k+1=9k2+3k+3k+1=9k2+6k+1(chia 3 dư 1)
nên n*n=(3k+2)(3k+2)=3k(3k+2)+2(3k+2)=9k2+6k+6k+4=9k2+2k+4(chia 3 dư 1 vì 4 chia 3 dư 1)
Vậy với n không chia hết cho 3 thì n*n chia 3 dư 1
2)Vì p là số nguyên tố>3 nên p2 là hợp số(vì chia hết cho p)
nên p2+2003 là hợp số
1. Giả sử p2 +2 đều là các số nguyên tố. Chứng minh p3+2 là số nguyên tố
2 Chứng minh 1 số có tổng các chữ số là 2018 thì số đó ko là số chính phương
Mn giúp mk vs nha
1.Cho n > 2 và ko chia hết cho 3.CM rằng n2 -1 và n2 + 1 ko thể đồng thời là 2 số nguyên tố
2.Cho p là số nguyên tố > 3
a,Chứng minh p có dạng 6k + 1 hoặc 6k +5
b,Biết 8p + 1 cũng là 1 số nguyên tố , Cm 4p + 1 là hợp số
3.Cho p và p +8 đều là số nguyên tố (p > 3).Hỏi p +100 là hợp số hay số nguyên tố
1.+/n ko chia het cho3
*Voi n=3k+1(dk cua k)
=>n^2-1=(3k+1)^2-1=9k^2+6k+1-1=9k^2+6k
=3(3k^2+2k) chia het cho 3
ma n^2-1>3 voi n>2;n ko chia het cho 3
=>n^2-1 la hop so tai n chia 3 du 1(n>2)
*Voi n=3p+2(dk cua p)
=>n^2-1=(3p+2)^2-1=9p^2+12p+4-1
=9p^2+12p+3
=3(3p^2+4p+1) chia het cho 3
ma n^2-1>3 voi n>2;n ko chia het cho 3
=>n^2-1 la hop so tai n chia 3 du 2(n>2)
=>n^2-1 la hop so voi moi n >2;n ko chia het cho 3
=>n^2-1 và n^2+1 ko thể đồng thời là
số nguyên tố voi n>2;n ko chia hết cho 3
Chứng minh rằng số sau ko phải số nguyên tố : A = 2^2015 - 1
giúp mk ngay bây giờ nhé các bạn
1. Cho n là 1 số nguyên tố > 3. Chứng minh p:6 dư 1 hoặc 5
2
a, cho n là 1 số tự nhiên ko chia hết cho 3. Chứng minh n2 : 3 dư 1
b, cho p là 1 số nguyên tố > 3. Hỏi p2 + 2018 là số nguyên tố hay hợp số?
thanks các bạn
2. a) Nếu n = 3k +1 thì n2 + (3k+1) (3k+1) hay n2 = 3k(3k+1)+ 3k +1.
Rõ ràng n2 chia co 3 dư 1.
Nếu n= 3k+2 thì n2 = (3k+2) (3k+2) hay n2 =3k(3k+2)+ 2 ( 3k + 2)
= 3k (3k+2 ) + 6k +4.
2 số hạngđầu chia hết cho 3, số hạng cuối chia cho 3 dư 1 nên n2 chia cho 3 dư 1.
b) p là số nguyên tố lớn hơn 3 nên không chia hết cho 3. vậy p2 chia cho 3 duw1 tức là p2 = 3k+1 do đó p2 + 2018 = 3k +1 + 2018 = 3k + 2019 cha hết cho 3. Vậy p2 + 2018 là hợp số
Tớ xin llõi, tớ muốn giúp cậu lắm nhưng tớ chua học, xin lõi nhé!
cho p là 1 số nguyên tố .chứng minh rằng 2 số 8p -1 và 8p+1 ko đồng thời là sồ nguyên tố
Nếu p = 2 thì 8 . 2 - 1 = 15 ( là hợp số )
Nếu p = 3 thì 8 . 3 + 1 = 25 ( là hợp số )
Nếu p > 3 thì ta giả sử 8p -1 ; 8p ; 8p + 1 là ba số tự nhiên liên tiếp chỉ có 1 và chỉ 1 số chia hết cho 3
Mà 8p không chia hết cho 3 nên chỉ có thể 8p - 1 hoặc 8p + 1
=> Nêu p là số nguyên tố thì 8p - 1 và 8p + 1 không đồng thời là số nguyên tố
cho M =1/22+1/32+....+1/452. chứng minh M ko phải là số tự nhuên
Dễ thấy M>0.
Ta cần chứng minh M<1.Thật vậy!
\(M=\frac{1}{2^2}+\frac{1}{3^2}+.....+\frac{1}{45^2}\)
\(< \frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+....+\frac{1}{44\cdot45}\)
\(=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+.....+\frac{1}{44}-\frac{1}{45}\)
\(=\frac{1}{1}-\frac{1}{45}\)
\(< 1\)
\(\Rightarrow0< M< 1\)
\(\Rightarrowđpcm\)