Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Thị Hoài Thương
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
20 tháng 2 2018 lúc 15:10

Gọi số cạnh của đa giác là n (n ≥ 3; n Є N)

Số đường chéo của đa giác là

n ( n − 3 ) 2

Theo đề bài ta có

n ( n − 3 ) 2  = n ó n2 – 3n = 2n

ó n2 – 5n = 0ó n (n – 5) = 0

ó n = 0 ( k t m ) n = 5 ( t m )

Vậy đa giác thỏa mãn đề bài là ngũ giác

Đáp án cần chọn là: B

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
15 tháng 11 2019 lúc 11:35

Số đường chéo của đa giác n cạnh là (n( n - 3 ))/2. ( n ∈ N, n ≥ 3 )

Theo giả thiết ta có (n( n - 3 ))/2 = n ⇔ n( n - 3 ) = 2n  ⇔ n 2 - 3 n - 2 n = 0

⇔ n 2 - 5 n = 0 ⇔ n ( n - 5 ) = 0  ⇔ Bài tập: Đa giác. Đa giác đều | Lý thuyết và Bài tập Toán 8 có đáp án

So sánh điều kiện ta có n = 5 thỏa mãn.

Chọn A

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
27 tháng 12 2017 lúc 3:24

Lưu Vân Anh
Xem chi tiết
Lê Song Phương
12 tháng 12 2021 lúc 20:11

Số đường chéo của một đa giác \(n\) cạnh \(\left(n>3\right)\)được tính bởi công thức \(\frac{n\left(n-3\right)}{2}\)

a) Số đường chéo bằng số cạnh có nghĩa là \(\frac{n\left(n-3\right)}{2}=n\Leftrightarrow n^2-3n=2n\Leftrightarrow n^2-5n=0\Leftrightarrow n\left(n-5\right)=0\Leftrightarrow\orbr{\begin{cases}n=0\left(loại\right)\\n=5\left(nhận\right)\end{cases}}\)

Vậy hình ngũ giác có số đường chéo bằng số cạnh.

Số đường chéo gấp đôi số cạnh có nghĩa là \(\frac{n\left(n-3\right)}{2}=2n\Leftrightarrow n^2-3n=4n\Leftrightarrow n^2-7n=0\Leftrightarrow n\left(n-7\right)=0\Leftrightarrow\orbr{\begin{cases}n=0\left(loại\right)\\n=7\left(nhận\right)\end{cases}}\)

Vậy hình thất giác có số đường chéo gấp đôi số cạnh.

Khách vãng lai đã xóa
Lưu Vân Anh
12 tháng 12 2021 lúc 15:58

Các bạn ơi giúp mik với

Khách vãng lai đã xóa
Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
7 tháng 7 2018 lúc 8:50

Đáp án A

Phương pháp

Tìm số cạnh và số đường chéo của đa giác đều n cạnh.

Cách giải

Khi nối hai đỉnh bất kì của đa giác ta được một số đoạn thẳng, trong đó bao gồm cạnh của đa giác và đường chéo của đa giác đó.

Đa giác đều n cạnh có n đỉnh, do đó số đường chéo là C n 2 − n  

Theo giả thiết bài toán ta có 

C n 2 − n = n ⇔ C n 2 = 2 n ⇔ n ! 2 ! n − 2 ! = 2 n ⇔ n n − 1 = 4 n ⇔ n − 1 = 4 ⇔ n = 5

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
15 tháng 8 2018 lúc 10:21

Đáp án A

Phương pháp

Tìm số cạnh và số đường chéo của đa giác đều n cạnh.

Cách giải

Khi nối hai đỉnh bất kì của đa giác ta được một số đoạn thẳng, trong đó bao gồm cạnh của đa giác và đường chéo của đa giác đó.

Đa giác đều n cạnh có n đỉnh, do đó số đường chéo là C n 2   -   n  

Theo giả thiết bài toán ta có

Đỗ Đức Đạt
Xem chi tiết
๖Fly༉Donutღღ
13 tháng 12 2017 lúc 20:38

a) \(\frac{\left(24-3\right).24}{2}=252\)đường chéo

b) \(\left(n-3\right).n=340\)

\(n^2-3n=340\)

\(n^2-3n-340=0\)

\(n^2-20n+17n-340=0\)

\(n\left(n-20\right)+17\left(n-20\right)\)

\(\left(n+17\right)\left(n-20\right)=0\)

\(\Leftrightarrow\)\(\orbr{\begin{cases}n+17=0\\n-20=0\end{cases}}\)\(\Leftrightarrow\)\(\orbr{\begin{cases}n=-17\\n=20\end{cases}}\)

n = -17 ( loại )

n = 20 ( nhận )

Vậy n = 20 hay số cạnh của đa giác là 20 

phạm văn tuấn
13 tháng 12 2017 lúc 20:33

1 Đa giác có n cạnh có : 

- Số đường chéo từ 1 đỉnh là : (n - 3) 
- Số đỉnh là n 

Do 1 đường chéo nối 2 đỉnh 
=> 1 Đa giác có n cạnh có n(n - 3)/2 đường chéo 

biết tổng số đường chéo là 170 

=> n(n - 3)/2 = 170 

=> n² - 3n - 340 = 0 

∆ = (-3)² - 4.(-340) = 1369 

=> √∆ = 37 

=> n = ... (tự giải)

Lê Minh Tú
13 tháng 12 2017 lúc 20:37

b) Đa giác có n cạnh có : 

- Số đường chéo từ 1 đỉnh là : (n - 3) 
- Số đỉnh là n 

Do 1 đường chéo nối 2 đỉnh 
=> 1 Đa giác có n cạnh có n \(\frac{\left(n+3\right)}{2}\)đường chéo

Biết tổng số đường chéo là 170 

\(\Rightarrow\frac{n\left(n-3\right)}{2}=170\)

\(\Rightarrow n^2-3-340=0\)

\(\Delta=\left(-3\right)^2-4.\left(-340\right)=1369\)

\(\sqrt{\Delta}=37\)

\(\Rightarrow n=37\)

Lê Phương Mai
Xem chi tiết
Nguyễn Hoàng Minh
3 tháng 9 2021 lúc 16:33

Số đường chéo của đa giác đều n cạnh là \(\dfrac{n\left(n-3\right)}{2}\)
Số đường chéo bằng 33 số cạnh

\(\Rightarrow\dfrac{n\left(n-3\right)}{2}=33n\Rightarrow n\left(n-3\right)=66n\\ \Rightarrow n-3=66\\ \Rightarrow n=69\)
Suy ra đa giác đều đó có 69 cạnh
Số đo mỗi góc là \(\dfrac{180\cdot33+360}{69}\approx91,3\)