Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
ytr
Xem chi tiết
Nguyễn Thị Nhung
Xem chi tiết
Hoàng Đức Thắng
Xem chi tiết
ytr
Xem chi tiết
Không Một Ai
5 tháng 9 2019 lúc 18:35

Bài 1.

a) x2 + 7x +12 = 0

Ta có Δ = 72 - 4.12 = 1> 0 => \(\sqrt{\Delta}=\sqrt{1}=1\)

Phương trình có 2 nghiệm phân biệt:

x1 = \(\frac{-7+1}{2}=-3\)

x2= \(\frac{-7-1}{2}=-4\)

Không Một Ai
5 tháng 9 2019 lúc 18:47

Bài 1

b) 2x2 + 5x - 3=0

Ta có: Δ = 52 + 4.2.3 = 49 > 0 => \(\sqrt{\Delta}=\sqrt{49}=7\)

Phương tình có 2 nghiệm phân biệt:

x1 = \(\frac{-5+7}{2.2}=\frac{1}{2}\)

x2 = \(\frac{-5-7}{2.2}-3\)

c) 3x2 +10x+7 = 0

Ta có: Δ = 102 - 4.3.7= 16> 0 => \(\sqrt{\Delta}=\sqrt{16}=4\)

Phương tình có 2 nghiệm phân biệt:

x1= \(\frac{-10+4}{2.3}=-1\)

x2= \(\frac{-10-4}{2.3}=-\frac{7}{3}\)

Không Một Ai
5 tháng 9 2019 lúc 18:56

Bài 1

d)x4+5x2-36=0

Đặt x2 = t ( đk: t ≥0)

=> t2 +5t - 36 =0

Ta có: Δ = 52 + 4.36 = 169 > 0 => \(\sqrt{\Delta}=\sqrt{169}=13\)

Phương tình có 2 nghiệm phân biệt:

t1 = \(\frac{-5-13}{2}=-9\) (loại)

t2 = \(\frac{-5+13}{2}=4\) (thỏa mãn)

Với t = 4 ta có:

x2 = 4

\(\left[{}\begin{matrix}x=2\\x=-2\end{matrix}\right.\)

Phạm Thanh Thúy
Xem chi tiết
Phùng Khánh Linh
16 tháng 10 2017 lúc 18:08

a) y( x - 2) + 3x -6 = 2

y( x -2) + 3( x -2) =2

( x -2)( y +3) =2.1 = ( -1).(-2)

*) x -2 = 2 -> x = 4

y +3 = 1 -> y = -2

*) x -2 = 1 -> x = 3

y +3 = 2 -> y = -1

*) x - 2 = - 1 -> x = 1

y +3 = - 2 -> y = -5

*) x - 2 = -2 -> x= 0

y +3 = -1 -> y = -4

Phùng Khánh Linh
16 tháng 10 2017 lúc 18:09

a) KL : Vậy......

Nguyễn Ngọc Linh
3 tháng 11 2018 lúc 21:12

b, xy + 3x - 2y +7 = 0

\(\Leftrightarrow xy+3x-2y-6=1\)

\(\Leftrightarrow\left(xy+3x\right)-\left(2y+6\right)=1\)

\(\Leftrightarrow x\left(y+3\right)-2\left(y+3\right)=1\)

\(\Leftrightarrow\left(y+3\right)\left(x-2\right)=1\)

Có 2 TH xảy ra:

TH1: \(\left\{{}\begin{matrix}x-2=1\\y+3=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=3\\y=-2\end{matrix}\right.\)

TH2: \(\left\{{}\begin{matrix}x-2=-1\\y+3=-1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=-4\end{matrix}\right.\)

Vậy \(\left[{}\begin{matrix}\left\{{}\begin{matrix}x=3\\y=-2\end{matrix}\right.\\\left\{{}\begin{matrix}x=1\\y=-4\end{matrix}\right.\end{matrix}\right.\)

Demngayxaem
Xem chi tiết
Mai Thị Thúy
Xem chi tiết
Kimian Hajan Ruventaren
29 tháng 7 2021 lúc 21:39

ý a ở đây bn https://hoc247.net/hoi-dap/toan-10/giai-he-pt-3x-x-2-2-y-2-va-3y-y-2-2-x-2-faq371128.html

Nguyễn Việt Lâm
29 tháng 7 2021 lúc 22:06

b.

Với \(xy=0\) không là nghiệm

Với \(xy\ne0\)

\(\Leftrightarrow\left\{{}\begin{matrix}x\left(y^2+1\right)=y\left(5-x^2\right)\\y^2+1=y\left(5-2x\right)\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}\dfrac{y^2+1}{y}=\dfrac{5-x^2}{x}\\\dfrac{y^2+1}{y}=5-2x\end{matrix}\right.\)

\(\Rightarrow\dfrac{5-x^2}{x}=5-2x\)

\(\Leftrightarrow5-x^2=5x-2x^2\)

\(\Leftrightarrow...\)

Nguyễn Việt Lâm
29 tháng 7 2021 lúc 22:06

c.

\(\Leftrightarrow\left\{{}\begin{matrix}x^2+x\left(y+1\right)+\left(y+1\right)^2=3\\2x^2-\left(y+1\right)^2=1\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x^2+x\left(y+1\right)+\left(y+1\right)^2=3\\6x^2-3\left(y+1\right)^2=3\end{matrix}\right.\)

\(\Rightarrow5x^2-x\left(y+1\right)-4\left(y+1\right)^2=0\)

\(\Leftrightarrow\left(x-y-1\right)\left(5x+4\left(y+1\right)\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}y=x-1\\y=-\dfrac{5x+4}{4}\end{matrix}\right.\)

Thế vào 1 trong 2 pt ban đầu...

Ngô Đức Anh 5a3
Xem chi tiết
l҉o҉n҉g҉ d҉z҉
6 tháng 9 2020 lúc 15:42

ĐKXĐ : x,y ∈ Z

a) xy + 3x - 2y - 7 = 0

<=> x( y + 3 ) - 2( y + 3 ) - 1 = 0

<=> ( y + 3 )( x - 2 ) = 1

Ta có bảng sau :

x-21-1
y+31-1
x31
y-2-4

Vậy ( x ; y ) = { ( 3 ; -2 ) , ( 1 ; -4 ) }

b) xy - x + 5y - 7 = 0

<=> x( y - 1 ) + 5( y - 1 ) - 2 = 0

<=> ( y - 1 )( x + 5 ) = 2

Ta có bảng sau :

x+51-12-2
y-12-21-1
x-4-6-3-7
y3-120

Vậy ( x ; y ) = { ( -4 ; 3 ) , ( -6 ; -1 ) , ( -3 ; 2 ) , ( -7 ; 0 ) }

c) x + 2y = xy + 2

<=> x + 2y - xy - 2 = 0

<=> x( 1 - y ) - 2( 1 - y ) = 0

<=> ( x - 2 )( 1 - y ) = 0

<=> \(\hept{\begin{cases}x-2=0\\1-y=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=2\\y=1\end{cases}}\)

Vậy ( x ; y ) = ( 2 ; 1 )

Khách vãng lai đã xóa
l҉o҉n҉g҉ d҉z҉
6 tháng 9 2020 lúc 21:08

à cho mình sửa ý c) một chút nhé

( x - 2 )( 1 - y ) = 0

Với x - 2 = 0 => x = 2 và nghiệm đúng ∀ y ∈ R

Với 1 - y = 0 => y = 1 và nghiệm đúng ∀ x ∈ R

Khách vãng lai đã xóa
Nhàn Phạm Thị Thanh
Xem chi tiết
Đoàn Đức Hà
15 tháng 7 2021 lúc 15:40

a) \(xy+3x-2y-7=0\)

\(\Leftrightarrow x\left(y+3\right)-2y-6=1\)

\(\Leftrightarrow\left(x-2\right)\left(y+3\right)=1\)

mà \(x,y\)nguyên nên \(x-2,y+3\)là ước của \(1\)nên ta có bảng giá trị: 

x-21-1
y+31-1
x3-1
y-2-4

Vậy phương trình có nghiệm là: \(\left(3,-2\right),\left(-1,-4\right)\).

b) \(5y-2x^2-2y^2+2=0\)

\(\Leftrightarrow16x^2+16y^2-40y-16=0\)

\(\Leftrightarrow\left(4x\right)^2+\left(4y-5\right)^2=41\)

Vì \(x,y\)nguyên nên \(\left(4x\right)^2,\left(4y-5\right)^2\)là các số chính phương.

Phân tích \(41\)thành tổng hai số chính phương có cách duy nhất bằng \(41=16+25\)

mà \(\left(4x\right)^2⋮16\)nên ta có: 

\(\hept{\begin{cases}\left(4x\right)^2=16\\\left(4y-5\right)^2=25\end{cases}}\Leftrightarrow\hept{\begin{cases}x=\pm1\\y=0\end{cases}}\)(vì \(y\)nguyên)

Khách vãng lai đã xóa