Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Quoc Tran Anh Le
Xem chi tiết
Hà Quang Minh
25 tháng 9 2023 lúc 16:27

Ta có:

\(\begin{array}{l}\cos {30^o} = \sin \left( {{{90}^o} - {{30}^o}} \right) = \sin {60^o} = \frac{{\sqrt 3 }}{2};\\\sin {150^o} = \sin \left( {{{180}^o} - {{150}^o}} \right) = \sin {30^o} = \frac{1}{2};\\\tan {135^o} =  - \tan \left( {{{180}^o} - {{135}^o}} \right) =  - \tan {45^o} =  - 1\end{array}\)

\( \Rightarrow E = 2.\frac{{\sqrt 3 }}{2} + \frac{1}{2} - 1 = \sqrt 3  - \frac{1}{2}.\)

Quoc Tran Anh Le
Xem chi tiết
Hà Quang Minh
24 tháng 9 2023 lúc 15:31

a) \(M = \sin {45^o}.\cos {45^o} + \sin {30^o}\)

Ta có: \(\left\{ \begin{array}{l}\sin {45^o} = \cos {45^o} = \frac{{\sqrt 2 }}{2};\;\\\sin {30^o} = \frac{1}{2}\end{array} \right.\)

Thay vào M, ta được: \(M = \frac{{\sqrt 2 }}{2}.\frac{{\sqrt 2 }}{2} + \frac{1}{2} = \frac{2}{4} + \frac{1}{2} = 1\)

b) \(N = \sin {60^o}.\cos {30^o} + \frac{1}{2}.\sin {45^o}.\cos {45^o}\)

Ta có: \(\sin {60^o} = \frac{{\sqrt 3 }}{2};\;\;\cos {30^o} = \frac{{\sqrt 3 }}{2};\;\sin {45^o} = \frac{{\sqrt 2 }}{2};\, \cos {45^o}= \frac{{\sqrt 2 }}{2}\)

Thay vào N, ta được: \(N = \frac{{\sqrt 3 }}{2}.\frac{{\sqrt 3 }}{2} + \frac{1}{2}.\frac{{\sqrt 2 }}{2}.\frac{{\sqrt 2 }}{2} = \frac{3}{4} + \frac{1}{4} = 1\)

c) \(P = 1 + {\tan ^2}{60^o}\)

Ta có: \(\tan {60^o} = \sqrt 3 \)

Thay vào P, ta được: \(Q = 1 + {\left( {\sqrt 3 } \right)^2} = 4.\)

d) \(Q = \frac{1}{{{{\sin }^2}{{120}^o}}} - {\cot ^2}{120^o}.\)

Ta có: \(\sin {120^o} = \frac{{\sqrt 3 }}{2};\;\;\cot {120^o} = \frac{{ - 1}}{{\sqrt 3 }}\)

Thay vào P, ta được: \(Q = \frac{1}{{{{\left( {\frac{{\sqrt 3 }}{2}} \right)}^2}}} - \;{\left( {\frac{{ - 1}}{{\sqrt 3 }}} \right)^2} = \frac{1}{{\frac{3}{4}}} - \;\frac{1}{3} = \;\frac{4}{3} - \;\frac{1}{3} = 1.\)

Quoc Tran Anh Le
Xem chi tiết
Hà Quang Minh
24 tháng 9 2023 lúc 0:37

a) \(A = \cos {0^o} + \cos {40^o} + \cos {120^o} + \cos {140^o}\)

Tra bảng giá trị lượng giác của một số góc đặc biệt, ta có:

 \(\cos {0^o} = 1;\;\cos {120^o} =  - \frac{1}{2}\)

Lại có: \(\cos {140^o} =  - \cos \left( {{{180}^o} - {{40}^o}} \right) =  - \cos {40^o}\)  

\(\begin{array}{l} \Rightarrow A = 1 + \cos {40^o} + \left( { - \frac{1}{2}} \right) - \cos {40^o}\\ \Leftrightarrow A = \frac{1}{2}.\end{array}\)

b) \(B = \sin {5^o} + \sin {150^o} - \sin {175^o} + \sin {180^o}\)

Tra bảng giá trị lượng giác của một số góc đặc biệt, ta có:

 \(\sin {150^o} = \frac{1}{2};\;\sin {180^o} = 0\)

Lại có: \(\sin {175^o} = \sin \left( {{{180}^o} - {{175}^o}} \right) = \sin {5^o}\)  

\(\begin{array}{l} \Rightarrow B = \sin {5^o} + \frac{1}{2} - \sin {5^o} + 0\\ \Leftrightarrow B = \frac{1}{2}.\end{array}\)

c) \(C = \cos {15^o} + \cos {35^o} - \sin {75^o} - \sin {55^o}\)

Ta có: \(\sin {75^o} = \cos\left( {{{90}^o} - {{75}^o}} \right) = \cos {15^o}\); \(\sin {55^o} = \cos\left( {{{90}^o} - {{55}^o}} \right) = \cos {35^o}\)

\(\begin{array}{l} \Rightarrow C = \cos {15^o} + \cos {35^o} - \cos {15^o} - \cos {35^o}\\ \Leftrightarrow C = 0.\end{array}\)

d) \(D = \tan {25^o}.\tan {45^o}.\tan {115^o}\)

Ta có: \(\tan {115^o} =  - \tan \left( {{{180}^o} - {{115}^o}} \right) =  - \tan {65^o}\)

Mà: \(\tan {65^o} = \cot \left( {{{90}^o} - {{65}^o}} \right) = \cot {25^o}\)

\(\begin{array}{l} \Rightarrow D = \tan {25^o}.\tan {45^o}.(-\cot {25^o})\\ \Leftrightarrow D =- \tan {45^o} = -1\end{array}\)

e) \(E = \cot {10^o}.\cot {30^o}.\cot {100^o}\)

Ta có: \(\cot {100^o} =  - \cot \left( {{{180}^o} - {{100}^o}} \right) =  - \cot {80^o}\)

Mà: \(\cot {80^o} = \tan \left( {{{90}^o} - {{80}^o}} \right) = \tan {10^o}\Rightarrow \cot {100^o}  =- \tan {10^o}\)

\(\begin{array}{l} \Rightarrow E = \cot {10^o}.\cot {30^o}.(-\tan {10^o})\\ \Leftrightarrow E = -\cot {30^o} =- \sqrt 3 .\end{array}\)

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
25 tháng 4 2019 lúc 7:24

Ta có sin   α = 3 5 suy ra sin 2 α = 9 25 , mà  sin 2 α + cos 2 α = 1 , do đó:

cos 2 α = 1 - sin 2 α = 1 - 9 25 = 16 25 suy ra cos   α = 4 5

Do đó:

tan   α = sin α cos α = 3 5 : 4 5 = 3 5 . 5 4 = 3 4

c o t   α = cos α sin α = 4 5 : 3 5 = 4 5 . 5 3 = 4 3

Vậy cos   α = 4 5 ; tan   α = 3 4 ; c o t   α = 4 3

Đáp án cần chọn là: B

Quoc Tran Anh Le
Xem chi tiết
Kiều Sơn Tùng
24 tháng 9 2023 lúc 15:11

Tham khảo:

Gọi M là điểm trên nửa đường tròn đơn vị sao cho \(\widehat {xOM} = {120^o}\)

Gọi N, P tương ứng là hình chiếu vuông góc của M lên các trục Ox, Oy.

Vì  \(\widehat {xOM} = {120^o} > {90^o}\) nên M nằm bên trái trục tung.

Khi đó:\(\;\cos {120^o} =  - \,\;\overline {ON} ,\;\;\sin {120^o} = \overline {OP} \)

Vì \(\widehat {xOM} = {120^o}\) nên \(\widehat {NOM} = {180^o} - {120^o} = {60^o}\) và \(\widehat {POM} = {120^o} - {90^o} = {30^o}\)

Vậy các tam giác \(\Delta MON\) và \(\Delta MOP\) vuông tại N, p và có một góc bằng \({30^o}\)

\( \Rightarrow ON = MP = \frac{1}{2}OM = \frac{1}{2}\)(Trong tam giác vuông, cạnh đối diện góc \({30^o}\) bằng một nửa cạnh huyền)

Và \(OP = MN = \sqrt {O{M^2} - O{N^2}}  = \sqrt {{1^2} - {{\left( {\frac{1}{2}} \right)}^2}}  = \frac{{\sqrt 3 }}{2}\)

Vậy điểm M có tọa độ là \(\left( { - \frac{1}{2};\frac{{\sqrt 3 }}{2}} \right)\).

Và \(\cos {120^o} =  - \frac{1}{2};\;\;\;\sin {120^o} = \frac{{\sqrt 3 }}{2}\)

\(\begin{array}{l}\; \Rightarrow \;\tan {120^o} = \frac{{\sin {{120}^o}}}{{\cos {{120}^o}}} = \frac{{\sqrt 3 }}{2}:\left( { - \frac{1}{2}} \right) =  - \sqrt 3 ;\\\cot {120^o} = \frac{{\cos {{120}^o}}}{{\sin {{120}^o}}} = \left( { - \frac{1}{2}} \right):\frac{{\sqrt 3 }}{2} = \frac{{ - 1}}{{\sqrt 3 }} =  - \frac{{\sqrt 3 }}{3}.\end{array}\)

Chú ý

Ta có thể sử dụng máy tính cầm tay để tính các giá trị lượng giác góc \({120^o}\)

Với các loại máy tính fx-570 ES (VN hoặc VN PLUS) ta làm như sau:

Bấm phím “SHIFT”  “MODE” rồi bấm phím “3” (để chọn đơn vị độ)

Tính \(\sin {120^o}\), bấm phím:  sin  1  2  0  \(^o\)’’’  = ta được kết quả là \(\frac{{\sqrt 3 }}{2}\)

Tính \(\cos {120^o}\),bấm phím:  cos  1  2  0  \(^o\)’’’  = ta được kết quả là \(\frac{{ - 1}}{2}\)

Tính \(\tan {120^o}\), bấm phím:  tan  1  2  0  \(^o\)’’’  = ta được kết quả là \( - \sqrt 3 \)

( Để tính \(\cot {120^o}\), ta tính \(1:\tan {120^o}\))

Quoc Tran Anh Le
Xem chi tiết
Hà Quang Minh
24 tháng 9 2023 lúc 15:15

a)

Đặt  \(A = \left( {2\sin {{30}^o} + \cos {{135}^o} - 3\tan {{150}^o}} \right).\left( {\cos {{180}^o} - \cot {{60}^o}} \right)\)

Ta có: \(\left\{ \begin{array}{l}\cos {135^o} =  - \cos {45^o};\cos {180^o} =  - \cos {0^o}\\\tan {150^o} =  - \tan {30^o}\end{array} \right.\)

\( \Rightarrow A = \left( {2\sin {{30}^o} - \cos {{45}^o} + 3\tan {{30}^o}} \right).\left( { - \cos {0^o} - \cot {{60}^o}} \right)\)

Sử dụng bảng giá trị lượng giác của một số góc đặc biệt, ta có:

\(\left\{ \begin{array}{l}\sin {30^o} = \frac{1}{2};\tan {30^o} = \frac{{\sqrt 3 }}{3}\\\cos {45^o} = \frac{{\sqrt 2 }}{2};\cos {0^o} = 1;\cot {60^o} = \frac{{\sqrt 3 }}{3}\end{array} \right.\)

\( \Rightarrow A = \left( {2.\frac{1}{2} - \frac{{\sqrt 2 }}{2} + 3.\frac{{\sqrt 3 }}{3}} \right).\left( { - 1 - \frac{{\sqrt 3 }}{3}} \right)\)

\(\begin{array}{l} \Leftrightarrow A =  - \left( {1 - \frac{{\sqrt 2 }}{2} + \sqrt 3 } \right).\left( {1 + \frac{{\sqrt 3 }}{3}} \right)\\ \Leftrightarrow A =  - \frac{{2 - \sqrt 2  + 2\sqrt 3 }}{2}.\frac{{3 + \sqrt 3 }}{3}\\ \Leftrightarrow A =  - \frac{{\left( {2 - \sqrt 2  + 2\sqrt 3 } \right)\left( {3 + \sqrt 3 } \right)}}{6}\\ \Leftrightarrow A =  - \frac{{6 + 2\sqrt 3  - 3\sqrt 2  - \sqrt 6  + 6\sqrt 3  + 6}}{6}\\ \Leftrightarrow A =  - \frac{{12 + 8\sqrt 3  - 3\sqrt 2  - \sqrt 6 }}{6}.\end{array}\)

b)

Đặt  \(B = {\sin ^2}{90^o} + {\cos ^2}{120^o} + {\cos ^2}{0^o} - {\tan ^2}60 + {\cot ^2}{135^o}\)

Ta có: \(\left\{ \begin{array}{l}\cos {120^o} =  - \cos {60^o}\\\cot {135^o} =  - \cot {45^o}\end{array} \right. \Rightarrow \left\{ \begin{array}{l}{\cos ^2}{120^o} = {\cos ^2}{60^o}\\{\cot ^2}{135^o} = {\cot ^2}{45^o}\end{array} \right.\)

\( \Rightarrow B = {\sin ^2}{90^o} + {\cos ^2}{60^o} + {\cos ^2}{0^o} - {\tan ^2}60 + {\cot ^2}{45^o}\)

Sử dụng bảng giá trị lượng giác của một số góc đặc biệt, ta có:

\(\left\{ \begin{array}{l}\cos {0^o} = 1;\;\;\cot {45^o} = 1;\;\;\cos {60^o} = \frac{1}{2}\\\tan {60^o} = \sqrt 3 ;\;\;\sin {90^o} = 1\end{array} \right.\)

\( \Rightarrow B = {1^2} + {\left( {\frac{1}{2}} \right)^2} + {1^2} - {\left( {\sqrt 3 } \right)^2} + {1^2}\)

\( \Leftrightarrow B = 1 + \frac{1}{4} + 1 - 3 + 1 = \frac{1}{4}.\)

c

Đặt  \(C = \cos {60^o}.\sin {30^o} + {\cos ^2}{30^o}\)

Sử dụng bảng giá trị lượng giác của một số góc đặc biệt, ta có:

\(\sin {30^o} = \frac{1}{2};\;\;\cos {30^o} = \frac{{\sqrt 3 }}{2};\;\cos {60^o} = \frac{1}{2}\;\)

\( \Rightarrow C = \frac{1}{2}.\frac{1}{2} + {\left( {\;\frac{{\sqrt 3 }}{2}} \right)^2} = \frac{1}{4} + \frac{3}{4} = 1.\)

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
26 tháng 2 2017 lúc 16:21

Chọn D.

Ta có:

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
4 tháng 2 2017 lúc 7:57

Để ý rằng với các góc nhọn, khi góc lớn lên thì sin của nó lớn lên và chú ý rằng cos 20 °  = sin 70 ° , cos 40 °  = sin 50 °  và do sin α < tg α  từ

sin 20 °  < sin 50 °  (= cos 40 ° ) < sin 55 °  < sin 70 °  (= cos 20 ° ) < tg 70 ° .

Suy ra sin 20 °  < cos 40 ° < sin 55 °  < cos 20 °  <  70 °

khánh
Xem chi tiết
Nguyễn Lê Phước Thịnh
16 tháng 6 2023 lúc 0:10

a: Sửa đề: sin x=4/5

cosx=-3/5; tan x=-4/3; cot x=-3/4

b: 270 độ<x<360 độ

=>cosx>0

=>cosx=1/2

tan x=căn 3; cot x=1/căn 3