Khai triển các nhị thức sau đây rồi tính tổng các hệ số:
a,(2x-3)^3
b,(x^2+2)^4
c,(3x-5)^5
Khai triển nhị thức sau đây rồi tính tổng các hệ số:
\(a,\left(2x-3\right)^3\)
\(b,\left(x^2+2\right)^4\)
c, \(\left(3x-5\right)^5\)
a) Bạn áp dụng công thức: \(\left(a-b\right)^3=a^3-3a^2b+3ab^2-b^3\) vào lm nhé.
a) \(\left(2x-3\right)^3\)
\(=\left(2x\right)^3-3\left(2x\right)^2.3+3.2x.3^2-3^3\)
\(=8x^3-36x+54x-27\)
c) \(\left(3x-5\right)^5\)
\(=\left(3x\right)^3-3\left(3x\right)^2.5+3.3x.5^2-5^3\)
\(=27x^3-135x^2+225x-125\)
mk lm câu b nhé, câu a và c bn tham khảo của Wrecking Ball.
\(b,\left(x^2+2\right)^4\)
Áp dụng công thức \(\left(a+b\right)^4=a^4+4a^3b+6a^2b^2+4ab^3+b^4\) ta có:
\(\left(x^2+2\right)^4\)
\(=\left(x^2\right)^4+4\left(x^2\right)^3.2+6\left(x^2\right)^2.2^2+4x^2.2^3+2^4\)
\(=x^8+8x^6+24x^4+32x^2+16\)
Khai triển nhị thức sau đây rồi tính tổng các hệ số:
\(\left(2x^2-y\right)^3\)
\(\left(2x^2-y\right)^3\)
\(=8x^6-12x^4y+6x^2y^2-y^3\)
Tổng các hệ số là :
\(8+\left(-12\right)+6+\left(-1\right)\)
\(=-4+6-1\)
\(=2-1=1\)
khai triển các đa thức sau bằng nhị thức Newton
(x-3)^4 , (x-2y)^5 , (2x+1)^4 , (x-2)^4 , (3x-2y)^4
Khai triển nhị thức sau đây rồi tính tổng các hệ số:
\(a,\left(2x-3\right)^3\)
\(b,\left(x^2+2\right)^4\)
c, \(\left(3x-5\right)^5\)
a: \(=8x^3-36x^2+54x-27\)
b: \(=\left(x^2+2\right)^4\)
\(=\left(x^4+4x^2+4\right)^2\)
\(=x^8+16x^4+16+8x^6+8x^4+32x^2\)
Bài 4: Giải các bất phương trình sau rồi biểu diễn tập nghiệm trên trục số:
a) 3x+2 > 2b-3
b)5x-1 > 4x+3
c)2-x/3 > 3-2x/5
a) 3x+2>2b-3
\(\Leftrightarrow\)?
b) 5x-1>4x+3
\(\Leftrightarrow\)5x-4x>3+1
\(\Leftrightarrow\)x>4
Vậy phương trình có tập nghiệm S={x|x>4}
c)2-x/3>3-2x/5
\(\Leftrightarrow\)2-3>(-2x/5)+(x/3)
\(\Leftrightarrow\)-1>-x/15
\(\Leftrightarrow\)1<x/15
\(\Leftrightarrow\)x>1/15
Vậy phương trình có tập nghiệm S={x|x>1/15}
Tìm hệ số của số hạng chứa x trong khai triển (2+3x) mũ 5 ( sử dụng công thức tổng quát Nhị Thức Newton)
SHTQ của \(\left(3x+2\right)^5\) là \(C^k_5\cdot\left(3x\right)^{5-k}\cdot2^k=C^k_5\cdot3^{5-k}\cdot2^k\cdot x^{5-k}\)
Hệ số của số hạng chứa x tương ứng với 5-k=1
=>k=4
=>Hệ số là \(C^4_5\cdot3^{5-4}\cdot2^4=240\)
Bài 1: Tính tổng các hệ số trong khai triển các nhị thức
a (5x-3)^2016
b (3x-4y)^2018
Bài 2 Mỗi số sau đây là bình phương số TN nào
A= 99...99 000...025
B=11...11 + 44...44+1
Tính tổng các hệ số của tất cả các hạng tử trong khai triển của nhị thức (3x−5y)20
Khai triển nhị thức sau đây rồi tính tổng các hệ số:
\(\left(2x^2-y\right)^3\)
\(=\left(2x^2\right)^3-3\cdot4x^4\cdot y+3\cdot2x^2\cdot y^2-y^3\)
\(=8x^6-12x^4y+6x^2y^2-y^3\)