Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Vũ Ngọc Phương Nam
Xem chi tiết
Đinh Thị Ngọc Anh
28 tháng 12 2015 lúc 17:29

5.\(C\text{ó}x^2-12=0\Rightarrow x^2=12\Rightarrow x=\sqrt{12}ho\text{ặc}x=-\sqrt{12}\)

Mà x>0\(\Rightarrow x=\sqrt{12}\)

6.Vì x-y=4\(\Rightarrow\left(x-y\right)^2=x^2-2xy+y^2=x^2-10+y^2=4^2=16\Rightarrow x^2+y^2=26\)

Có \(\left(x+y\right)^2=x^2+2xy+y^2=26+10=36=6^2=\left(-6\right)^2\)

Vì xy>0 và x>0 =>y>0=>x+y>0=>x+y=6

7. \(3x^2+7=\left(x+2\right)\left(3x+1\right)\)

\(3x^2+7=3x^2+7x+2\)

\(3x^2+7-3x^2-7x-2=0\)

-7x+5=0

-7x=-5

\(x=\frac{5}{7}\)

8.\(\left(2x+1\right)^2-4\left(x+2\right)^2=9\)

\(\left(2x+1\right)^2-\left(2x+4\right)^2=9\)

(2x+1-2x-4)(2x+1+2x+4)=9

-3(4x+5)=9

4x+5=-3

4x=-8

x=-2

Còn câu 9 và 10 để mình nghiên cứu đã

 

 

straw hat luffy
2 tháng 3 2017 lúc 0:06

biet x+y =2 tinh min 3x^2 + y^2

Qasalt
Xem chi tiết
Ng KimAnhh
Xem chi tiết
Nguyễn Lê Phước Thịnh
25 tháng 2 2023 lúc 14:43

a: \(=-2x^2\cdot3x+2x^2\cdot4X^3-2x^2\cdot7+2x^2\cdot x^2\)

\(=8x^5+2x^4-6x^3-14x^2\)

b: \(=2x^3-3x^2-5x+6x^2-9x-15\)

\(=2x^3+3x^2-14x-15\)

c: \(=\dfrac{-6x^5}{3x^3}+\dfrac{7x^4}{3x^3}-\dfrac{6x^3}{3x^3}=-2x^2+\dfrac{7}{3}x-2\)

d: \(=\dfrac{\left(3x-2\right)\left(3x+2\right)}{3x+2}=3x-2\)

e: \(=\dfrac{2x^4-8x^3-6x^2-5x^3+20x^2+15x+x^2-4x-3}{x^2-4x-3}\)

=2x^2-5x+1

Vũ Phương Nam
Xem chi tiết
Đường Quỳnh Giang
29 tháng 8 2018 lúc 22:56

\(A=x^2-4x-x\left(x-4\right)-15\)

\(=x^2-4x-x^2+4x-15=-15\)   =>  đpcm

\(B=5x\left(x^2-x\right)-x^2\left(5x-5\right)-13\)

\(=5x^3-5x^2-5x^3+5x^2-13=-13\)   =>   đpcm

\(C=-3x\left(x-5\right)+3\left(x^2-4x\right)-3x+7\)

\(=-3x^2+15x+3x^2-12x-3x+7=7\)   =>   đpcm

Đường Quỳnh Giang
29 tháng 8 2018 lúc 23:00

\(D=7\left(x^2-5x+3\right)-x\left(7x-35\right)-14\)

\(=7x^2-35x+21-7x^2+35x-14=7\)  =>   đpcm

\(E=4x\left(x^2-7+2\right)-4\left(x^3-7x+2x-5\right)\)

\(=4x^3-20x-4x^3+20x+20=20\)    =>    đpcm

\(H=x\left(5x-3\right)-x^2\left(x-1\right)+x\left(x^2-6x\right)-10+3x\)

\(=5x^2-3x-x^3+x^2+x^3-6x^2-10x+3x=-10\) =>   đpcm

Vô Danh
Xem chi tiết
Ngu như bò
Xem chi tiết
Đức Minh
28 tháng 11 2016 lúc 12:57

Câu 1: Giá trị của x thỏa mãn

|x+2,37|+|y5,3|=0

Để GTBT bằng 0 thì |x+2,37| = 0 và |y5,3| = 0

-> x = -2,37 , y = 5,3

Vậy x = -2,37

Câu 2: Giá trị của y thỏa mãn

−|2x+\(\frac{4}{7}\)|−|y−1,37| = 0

-> |2x+\(\frac{4}{7}\) = 0 -> x = \(-\frac{2}{7}\)

-> |y−1,37| = 0 -> y = 1,37

Vậy y = 1,37

 

Zek Tim
Xem chi tiết
KAl(SO4)2·12H2O
3 tháng 7 2018 lúc 21:42

\("="\Leftrightarrow x=1;y=3\)

Bạn thêm vào dòng cuối nhé :v Mình quên ghi :v

KAl(SO4)2·12H2O
3 tháng 7 2018 lúc 21:40

\(\frac{-7x^2+42x-64}{x^2-6x+10}\)

\(\Rightarrow7+\frac{6}{\left(x-3\right)^2+1}=y^2+2y\)

\(\Rightarrow\frac{6}{\left(x-3\right)^2+1}=\left(y-1\right)^2+6\)

\(\Rightarrow6=\left[\left(y-1\right)^2+6\right]\left[\left(x-3\right)^2+1\right]\)

\(\Rightarrow0=\left(y-1\right)^2\left(x-3\right)^2+6\left(x-3\right)^2+\left(y-1\right)^2\)

Hoàng Lê Bảo Ngọc
Xem chi tiết
Thắng Nguyễn
27 tháng 5 2016 lúc 22:02

Đặt \(y=3-x\).Ta có:\(\hept{\begin{cases}x+y=3\\x^2+y^2\ge5\end{cases}\Leftrightarrow\hept{\begin{cases}x^2+y^2+2xy=9\\x^2+y^2\ge5\end{cases}}}\)

\(\Rightarrow x^2+y^2+4\left(x^2+y^2+2xy\right)\ge5+4.9=41\)

\(\Rightarrow5\left(x^2+y^2\right)+4\left(2xy\right)\ge41\)

Mặt khác \(16\left(x^2+y^2\right)^2+25\left(2xy\right)^2\ge40\left(x^2+y^2\right)\left(2xy\right)\left(1\right)\)

Cộng 2 vế của (1) với \(25\left(x^2+y^2\right)^2+16\left(2xy\right)^2\):

\(\Rightarrow41\left[\left(x^2+y^2\right)^2+\left(2xy\right)^2\right]\ge\left[5\left(x^2+y^2\right)+4\left(2xy\right)^2\right]\ge41\)

hay \(\left(x^2+y^2\right)^2+\left(2xy\right)^2\ge41\Leftrightarrow x^4+y^4+6x^2y^2\ge41\)

Vậy minP=41

Hoàng Lê Bảo Ngọc
27 tháng 5 2016 lúc 22:30

You ơi , you thiếu điều kiện xảy ra dấu "="

Thắng Nguyễn
28 tháng 5 2016 lúc 5:23

dau = bn có thể tự xét mà ^^

PINK HELLO KITTY
Xem chi tiết