Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Quoc Tran Anh Le
Xem chi tiết
Hà Quang Minh
22 tháng 9 2023 lúc 21:19

a) \(\mathop {\lim }\limits_{x \to  + \infty } \frac{{9x + 1}}{{3x - 4}} = \mathop {\lim }\limits_{x \to  + \infty } \frac{{x\left( {9 + \frac{1}{x}} \right)}}{{x\left( {3 - \frac{4}{x}} \right)}} = \mathop {\lim }\limits_{x \to  + \infty } \frac{{9 + \frac{1}{x}}}{{3 - \frac{4}{x}}} = \frac{{9 + 0}}{{3 - 0}} = 3\)

b) \(\mathop {\lim }\limits_{x \to  - \infty } \frac{{7x - 11}}{{2x + 3}} = \mathop {\lim }\limits_{x \to  - \infty } \frac{{x\left( {7 - \frac{{11}}{x}} \right)}}{{x\left( {2 + \frac{3}{x}} \right)}} = \mathop {\lim }\limits_{x \to  - \infty } \frac{{7 - \frac{{11}}{x}}}{{2 + \frac{3}{x}}} = \frac{{7 - 0}}{{2 + 0}} = \frac{7}{2}\)

c) \(\mathop {\lim }\limits_{x \to  + \infty } \frac{{\sqrt {{x^2} + 1} }}{x} = \mathop {\lim }\limits_{x \to  + \infty } \frac{{x\sqrt {1 + \frac{1}{{{x^2}}}} }}{x} = \mathop {\lim }\limits_{x \to  + \infty } \sqrt {1 + \frac{1}{{{x^2}}}}  = \sqrt {1 + 0}  = 1\)

Hà Quang Minh
22 tháng 9 2023 lúc 21:19

d) \(\mathop {\lim }\limits_{x \to  - \infty } \frac{{\sqrt {{x^2} + 1} }}{x} = \mathop {\lim }\limits_{x \to  - \infty } \frac{{ - x\sqrt {1 + \frac{1}{{{x^2}}}} }}{x} = \mathop {\lim }\limits_{x \to  - \infty }  - \sqrt {1 + \frac{1}{{{x^2}}}}  =  - \sqrt {1 + 0}  =  - 1\)

e) Ta có: \(\left\{ \begin{array}{l}1 > 0\\x - 6 < 0,x \to {6^ - }\end{array} \right.\)

Do đó, \(\mathop {\lim }\limits_{x \to {6^ - }} \frac{1}{{x - 6}} =  - \infty \)                

g) Ta có: \(\left\{ \begin{array}{l}1 > 0\\x + 7 > 0,x \to {7^ + }\end{array} \right.\)

Do đó, \(\mathop {\lim }\limits_{x \to {7^ + }} \frac{1}{{x - 7}} =  + \infty \)

Quoc Tran Anh Le
Xem chi tiết
Hà Quang Minh
22 tháng 9 2023 lúc 21:28

a) \(\mathop {\lim }\limits_{x \to  - \infty } \frac{{6x + 8}}{{5x - 2}} = \mathop {\lim }\limits_{x \to  - \infty } \frac{{x\left( {6 + \frac{8}{x}} \right)}}{{x\left( {5 - \frac{2}{x}} \right)}} = \frac{6}{5}\)

b) \(\mathop {\lim }\limits_{x \to  + \infty } \frac{{6x + 8}}{{5x - 2}} = \mathop {\lim }\limits_{x \to  + \infty } \frac{{x\left( {6 + \frac{8}{x}} \right)}}{{x\left( {5 - \frac{2}{x}} \right)}} = \mathop {\lim }\limits_{x \to  + \infty } \frac{{6 + \frac{8}{x}}}{{5 - \frac{2}{x}}} = \frac{6}{5}\).

c) \(\mathop {\lim }\limits_{x \to  - \infty } \frac{{\sqrt {9{x^2} - x + 1} }}{{3x - 2}} = \mathop {\lim }\limits_{x \to  - \infty } \frac{{ - x\sqrt {9 - \frac{1}{x} + \frac{1}{{{x^2}}}} }}{{x\left( {3 - \frac{2}{x}} \right)}} =  - \frac{3}{3} =  - 1\).

Hà Quang Minh
22 tháng 9 2023 lúc 21:28

d) \(\mathop {\lim }\limits_{x \to  + \infty } \frac{{\sqrt {9{x^2} - x + 1} }}{{3x - 2}} = \mathop {\lim }\limits_{x \to  - \infty } \frac{{x\sqrt {9 - \frac{1}{x} + \frac{1}{{{x^2}}}} }}{{x\left( {3 - \frac{2}{x}} \right)}} = \frac{3}{3} = 1\).

e) \(\mathop {\lim }\limits_{x \to  - {2^ - }} \frac{{3{x^2} + 4}}{{2x + 4}} =  - \infty \)

Do \(\mathop {\lim }\limits_{x \to  - {2^ - }} \left( {3{x^2} + 1} \right) = 3.{\left( { - 2} \right)^2} + 1 = 13 > 0\) và \(\mathop {\lim }\limits_{x \to  - {2^ - }} \frac{1}{{2x + 4}} =  - \infty \)

g) \(\mathop {\lim }\limits_{x \to  - {2^ + }} \frac{{3{x^2} + 4}}{{2x + 4}} =  + \infty \).

Do \(\mathop {\lim }\limits_{x \to  - {2^ + }} \left( {3{x^2} + 1} \right) = 3.{\left( { - 2} \right)^2} + 1 = 13 > 0\) và \(\mathop {\lim }\limits_{x \to  - {2^ + }} \frac{1}{{2x + 4}} =  + \infty \)

Buddy
Xem chi tiết
Nguyễn Lê Phước Thịnh
23 tháng 7 2023 lúc 11:16

a: \(=\lim\limits_{x\rightarrow+\infty}\dfrac{4+\dfrac{3}{x}}{2}=\dfrac{4}{2}=2\)

b: \(=\lim\limits_{x\rightarrow-\infty}\dfrac{\dfrac{2}{x}}{3+\dfrac{1}{x}}=0\)

c: \(=\lim\limits_{x\rightarrow+\infty}\dfrac{\sqrt{1+\dfrac{1}{x^2}}}{1+\dfrac{1}{x}}=1\)

Buddy
Xem chi tiết
Hà Quang Minh
22 tháng 9 2023 lúc 12:22

a) \(\mathop {\lim }\limits_{x \to  + \infty } \frac{{ - x + 2}}{{x + 1}} = \mathop {\lim }\limits_{x \to  + \infty } \frac{{x\left( { - 1 + \frac{2}{x}} \right)}}{{x\left( {1 + \frac{1}{x}} \right)}} = \mathop {\lim }\limits_{x \to  + \infty } \frac{{ - 1 + \frac{2}{x}}}{{1 + \frac{1}{x}}} = \frac{{\mathop {\lim }\limits_{x \to  + \infty } \left( { - 1} \right) + \mathop {\lim }\limits_{x \to  + \infty } \frac{2}{x}}}{{\mathop {\lim }\limits_{x \to  + \infty } 1 + \mathop {\lim }\limits_{x \to  + \infty } \frac{1}{x}}} = \frac{{ - 1 + 0}}{{1 + 0}} =  - 1\)

b) \(\mathop {\lim }\limits_{x \to  - \infty } \frac{{x - 2}}{{{x^2}}} = \mathop {\lim }\limits_{x \to  - \infty } \frac{{x\left( {1 - \frac{2}{x}} \right)}}{{{x^2}}} = \mathop {\lim }\limits_{x \to  - \infty } \frac{1}{x}.\mathop {\lim }\limits_{x \to  - \infty } \left( {1 - \frac{2}{x}} \right)\)

                                \( = \mathop {\lim }\limits_{x \to  - \infty } \frac{1}{x}.\left( {\mathop {\lim }\limits_{x \to  - \infty } 1 - \mathop {\lim }\limits_{x \to  - \infty } \frac{2}{x}} \right) = 0.\left( {1 - 0} \right) = 0\).

Buddy
Xem chi tiết
Quoc Tran Anh Le
22 tháng 9 2023 lúc 11:43

a) \(\mathop {\lim }\limits_{x \to  + \infty } \frac{{1 - 3{x^2}}}{{{x^2} + 2x}} = \mathop {\lim }\limits_{x \to  + \infty } \frac{{{x^2}\left( {\frac{1}{{{x^2}}} - 3} \right)}}{{{x^2}\left( {1 + \frac{{2x}}{{{x^2}}}} \right)}} = \mathop {\lim }\limits_{x \to  + \infty } \frac{{\frac{1}{{{x^2}}} - 3}}{{1 + \frac{2}{x}}} = \frac{{\mathop {\lim }\limits_{x \to  + \infty } \frac{1}{{{x^2}}} - \mathop {\lim }\limits_{x \to  + \infty } 3}}{{\mathop {\lim }\limits_{x \to  + \infty } 1 + \mathop {\lim }\limits_{x \to  + \infty } \frac{2}{x}}} = \frac{{0 - 3}}{{1 + 0}} =  - 3\)

b) \(\mathop {\lim }\limits_{x \to  - \infty } \frac{2}{{x + 1}} = \mathop {\lim }\limits_{x \to  - \infty } \frac{2}{{x\left( {1 + \frac{1}{x}} \right)}} = \mathop {\lim }\limits_{x \to  - \infty } \frac{1}{x}.\mathop {\lim }\limits_{x \to  - \infty } \frac{2}{{1 + \frac{1}{x}}} = \mathop {\lim }\limits_{x \to  - \infty } \frac{1}{x}.\frac{{\mathop {\lim }\limits_{x \to  - \infty } 2}}{{\mathop {\lim }\limits_{x \to  - \infty } 1 + \mathop {\lim }\limits_{x \to  - \infty } \frac{1}{x}}} = 0.\frac{2}{{1 + 0}} = 0\).

Buddy
Xem chi tiết
Nguyễn Lê Phước Thịnh
23 tháng 7 2023 lúc 11:19

a: \(\lim\limits_{x\rightarrow-1^+}x+1=0\)

=>\(\lim\limits_{x\rightarrow-1^+}\dfrac{1}{x+1}=+\infty\)

b: \(\lim\limits_{x\rightarrow-\infty}1-x^2=\lim\limits_{x\rightarrow-\infty}\left[x^2\left(\dfrac{1}{x^2}-1\right)\right]\)

\(=-\infty\)

c: \(\lim\limits_{x\rightarrow3^-}\dfrac{x}{3-x}=\lim\limits_{x\rightarrow3^-}=\dfrac{-x}{x-3}\)

\(\lim\limits_{x\rightarrow3^-}x-3=0\)

\(\lim\limits_{x\rightarrow3^-}-x=3>0\)

=>\(\lim\limits_{x\rightarrow3^-}\dfrac{x}{3-x}=+\infty\)

Buddy
Xem chi tiết
Hà Quang Minh
22 tháng 9 2023 lúc 12:09

a) \(\mathop {\lim }\limits_{x \to {3^ - }} \frac{{2x}}{{x - 3}} = \mathop {\lim }\limits_{x \to {3^ - }} \left( {2x} \right).\mathop {\lim }\limits_{x \to {3^ - }} \frac{1}{{x - 3}}\)

Ta có: \(\mathop {\lim }\limits_{x \to {3^ - }} \left( {2x} \right) = 2\mathop {\lim }\limits_{x \to {3^ - }} x = 2.3 = 6;\mathop {\lim }\limits_{x \to {3^ - }} \frac{1}{{x - 3}} =  - \infty \)

\( \Rightarrow \mathop {\lim }\limits_{x \to {3^ - }} \frac{{2x}}{{x - 3}} =  - \infty \)

b) \(\mathop {\lim }\limits_{x \to  + \infty } \left( {3x - 1} \right) = \mathop {\lim }\limits_{x \to  + \infty } x\left( {3 - \frac{1}{x}} \right) = \mathop {\lim }\limits_{x \to  + \infty } x.\mathop {\lim }\limits_{x \to  + \infty } \left( {3 - \frac{1}{x}} \right)\)

Ta có: \(\mathop {\lim }\limits_{x \to  + \infty } x =  + \infty ;\mathop {\lim }\limits_{x \to  + \infty } \left( {3 - \frac{1}{x}} \right) = \mathop {\lim }\limits_{x \to  + \infty } 3 - \mathop {\lim }\limits_{x \to  + \infty } \frac{1}{x} = 3 - 0 = 3\)

\( \Rightarrow \mathop {\lim }\limits_{x \to  + \infty } \left( {3x - 1} \right) =  + \infty \)

Quoc Tran Anh Le
Xem chi tiết
Hà Quang Minh
22 tháng 9 2023 lúc 15:57

\(\mathop {\lim }\limits_{x \to  - \infty } \frac{{3x + 2}}{{4x - 5}} = \mathop {\lim }\limits_{x \to  - \infty } \frac{{x\left( {3 + \frac{2}{x}} \right)}}{{x\left( {4 - \frac{5}{x}} \right)}} = \mathop {\lim }\limits_{x \to  - \infty } \frac{{3 + \frac{2}{x}}}{{4 - \frac{5}{x}}} = \frac{{3 + 0}}{{4 - 0}} = \frac{3}{4}\)

Quoc Tran Anh Le
Xem chi tiết
Hà Quang Minh
22 tháng 9 2023 lúc 21:27

a) \(\mathop {\lim }\limits_{x \to  - 3} \left( {4{x^2} - 5x + 6} \right) = 4.{\left( { - 3} \right)^2} - 5.\left( { - 3} \right) + 6 = 57\)

b) \(\mathop {\lim }\limits_{x \to 2} \frac{{2{x^2} - 5x + 2}}{{x - 2}} = \mathop {\lim }\limits_{x \to 2} \frac{{\left( {x - 2} \right)\left( {2x - 1} \right)}}{{x - 2}} = \mathop {\lim }\limits_{x \to 2} \left( {2x - 1} \right) = 2.2 - 1 = 3\)

c) \(\begin{array}{c}\mathop {\lim }\limits_{x \to 4} \frac{{\sqrt x  - 2}}{{{x^2} - 16}} = \mathop {\lim }\limits_{x \to 4} \frac{{\sqrt x  - 2}}{{\left( {x - 4} \right)\left( {x + 4} \right)}} = \mathop {\lim }\limits_{x \to 4} \frac{{\sqrt x  - 2}}{{\left( {\sqrt x  - 2} \right)\left( {\sqrt x  + 2} \right)\left( {x + 4} \right)}} = \mathop {\lim }\limits_{x \to 4} \frac{1}{{\left( {\sqrt x  + 2} \right)\left( {x + 4} \right)}}\\ = \frac{1}{{\left( {\sqrt 4  + 2} \right)\left( {4 + 4} \right)}} = \frac{1}{{32}}\end{array}\)