Cho A=4+42+43+...+423+424
Chứng tỏ A chia hết cho 21
A chia hết cho 420
Cho A=4+42+43+...+424. Chứng tỏ:
A chia hết cho 20
A chia hết cho 21
A chia hết cho 420
ta co
A=4+4^2+4^3+...+4^24
=(4+4^2)+(4^3+4^4)+...+(4^23+4^24)
=(4+4^2).1+(4+4^2).4^22
=20.(1+4^2+...+4^22) chia het cho 20
ta co
A=4+4^2+4^3+...+4^23+4^24
=(4+4^2+4^3)+...+(4^22+4^23+4^24)
=21.(1+..+4^21) chia het cho 21 vi a chia het cho 20 va 21 ma ucln (20,21)=1 suy ra A chia het cho 20 va 21tuc la A chia het cho 420
tick nha
Cho B = 1 + 4 + 42 + 43 + 44 + 45 + ... + 436 + 437 + 438 Chứng tỏ rằng B chia hết cho cả 21
\(B=\left(1+4+4^2\right)+...+4^{36}\left(1+4+4^2\right)\)
\(=21\left(1+...+4^{36}\right)⋮21\)
Cho A = 4 + 42 + 43 +¼+ 423 + 424 . Chứng minh: A chia hết 20; A chia hết 21; A chia hết 420 .
chứng minh rằng A=4 +4 mũ 2 +....+4 mũ 23+4 mũ 24
a/A chia hết cho 20
b/A chia hết cho 21
c/A chia hết cho 420
Cho A = 4 + 42 + 43 + ... + 424. Chứng tỏ rằng: A chia hết cho 20; 21; 420
Cho B = 1 + 3 + 32 + ... + 3100. Tìm số dư khi chia B cho 13 và chia B cho 40
- Xét: Tổng B có 101 số hạng, nhóm 4 số vào 1 nhóm, ta đc 25 nhóm và thừa 1 số hạng
=> B = 1 + (3+32+33+34) + (35+36+37+38) +.....+ (397+398+399+3100)
=> B = 1 + 3(1+3+32+33) + 35(1+3+32+33) +.....+ 397(1+3+32+33)
=> B = 1 + 40.(3+35+...+397)
Có 1 chia 40 dư 1
40.(3+35+...+397)
chia hết cho 40
=> 1 + 40.(3+35+...+397) chia 40 dư 1
=> B chia 40 dư 1
A = 4 + 42 + 43 + ... + 424
= (4 + 42) + (43 + 44) + ... + (423 + 424)
= 4 (1 + 4) + 43 (1 + 4) + ... + 423 (1 + 4)
= 4 . 5 + 43 . 5 + ... + 423 . 5
= 20 + 20 . 42 + ... + 20 . 422
= 20 (1 + 42 + ... + 422) chia hết cho 20
ĐPCM
cho A = 4+42+43+...+423+424. Chứng minh : A⋮20,A⋮21,A⋮420.
A=(4+4^2)+...+4^22(4+4^2)
=20(1+...+4^22) chia hết cho 20
A=4(1+4+4^2)+...+4^22(1+4+4^2)
=21(4+...+4^22) chia hết cho 21
Vì A chia hết cho 20 và 21
và ƯCLN(20;21)=1
nên A chia hết cho 20*21=420
cho A = 4 + 42 + 43 + .... + 423 + 424 . chứng minh A ⋮ 20 , A⋮21 , A⋮420
Lời giải:
$A=(4+4^2)+(4^3+4^4)+...+(4^{23}+4^{24})$
$=(4+4^2)+4^2(4+4^2)+...+4^{22}(4+4^2)$
$=(4+4^2)(1+4^2+....+4^{22})=20(1+4^2+...+4^{22})\vdots 20$
----------------------
$A=(4+4^2+4^3)+(4^4+4^5+4^6)+....+(4^{22}+4^{23}+4^{24})$
$=4(1+4+4^2)+4^4(1+4+4^2)+....+4^{22}(1+4+4^2)$
$=(1+4+4^2)(4+4^4+....+4^{22})=21(4+4^4+...+4^{22})\vdots 21$
--------------------------
Vậy $A\vdots 20; A\vdots 21$. Mà $(20,21)=1$ nên $A\vdots (20.21)$ hay $A\vdots 420$
cho a+ 4b chia hết cho 39. Chứng tỏ 10a+b chia hết cho 39
AI BIẾT LÀM BÀI NÀY CHỈ GIÚP EM VỚI Ạ!!!
Cho A = 3 + 3^2 + 3^3 +..... + 3^60. Chứng tỏ rằng:
a) A chia hết cho 4
b) A chia hết cho 13
a) \(A=3+3^2+..+3^{60}\)
\(A=\left(3+3^2\right)+\left(3^3+3^4\right)+...+\left(3^{59}+3^{60}\right)\)
\(A=3\cdot\left(1+3\right)+3^3\cdot\left(1+3\right)+...+3^{59}\cdot\left(1+3\right)\)
\(A=4\cdot\left(3+3^3+...+3^{59}\right)\)
Vậy A chia hết cho 4
b) \(A=3+3^2+3^3+...+3^{60}\)
\(A=\left(3+3^2+3^3\right)+...+\left(3^{58}+3^{59}+3^{60}\right)\)
\(A=3\cdot\left(1+3+3^2\right)+...+3^{58}\cdot\left(1+3+3^2\right)\)
\(A=13\cdot\left(3+..+3^{58}\right)\)
Vậy A chia hết cho 13