M=-(x+1/8)^26-(x-y+3/8)^442+5,98
M=-\(^{\left(x+\dfrac{1}{8^{ }}\right)26}\)-\(\left(x-y=\dfrac{3}{8}\right)442\)+5,98
26 va 442 la mu nha cac ban
Tìm x, y để biểu thức sau đạt giá trị lớn nhất
M= -(x+1/8)26 - ( x-y+3/8) 442 +5,98
Vì:\(-\left(x+\frac{1}{8}\right)^{26}\ge0,-\left(x-y+\frac{3}{8}\right)\ge0\) nên:
\(\Leftrightarrow\left\{{}\begin{matrix}x+\frac{1}{8}=0\\x-y+\frac{3}{8}=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\frac{-1}{8}\\x-y+\frac{3}{8}=0\end{matrix}\right.\)
Thay: x=\(\frac{-1}{8}\) vào x-y+\(\frac{3}{8}\) =0, ta có:
\(\frac{-1}{8}\) -y+\(\frac{3}{8}\) =0
\(\frac{-1}{8}-y=0-\frac{3}{8}\)
\(\Rightarrow\frac{-1}{8}-y=\frac{-3}{8}\)
\(\Rightarrow y=\frac{-1}{8}-\frac{-3}{8}\)
\(y=\frac{-1}{8}+\frac{3}{8}\)
\(y=\frac{2}{8}=\frac{1}{4}\)
Vậy:x=\(\frac{-1}{8}\) ,y=\(\frac{1}{4}\) thì M đạt giá trị lớn nhất bằng 5,98
CHÚC BẠN HỌC TỐT NHÉ!!!
câu đầu tiên \(\left(x-y+\frac{3}{8}\right)^{442}\) nhé bạn !!
Bài 1: Tìm x,y để biểu thức sau đạt giá trị lớn nhất: M = -(x +1/8)^26-(x-y+3/8)^442+5,98
Bài 2: Tìm giá trị nhỏ nhất của các biểu thức sau:
a/ A = (x+4/7)^24+-12/2*93 b/ B = (x-4/3)^20+(y+0,2)^488-2*94
Giải thích ra giúp mình nhé!!!
tìm x,y để biểu thức sau đạt giá trị lớn nhất
\(M=\left(x+\frac{1}{8}\right)^{26}+\left(x-y+\frac{3}{8}\right)^{412}+5,98\)
( giúp mình với )
a/ Tìm GTNN của biểu thức : A=(x+\(\frac{4}{7}\))\(^{24}\)+\(\frac{-12}{293}\)
b/Tìm GTLN của biểu thứ : B=-(x+\(\frac{1}{6}\))\(^{26}\)-(x+y+\(\frac{3}{8}\))\(^{442}\)+5,98
\(A=\left(x+\frac{4}{7}\right)^{24}+\frac{-12}{293}\)
Ta có \(\left(x+\frac{4}{7}\right)^{24}\ge0\forall x\Rightarrow\left(x+\frac{4}{7}\right)^{24}+\frac{-12}{293}\ge\frac{-12}{293}\)
Đẳng thức xảy ra <=> x + 4/7 = 0 => x = -4/7
=> MinA = -12/293 <=> x = -4/7
\(B=-\left(x+\frac{1}{6}\right)^{26}-\left(x+y+\frac{3}{8}\right)^{422}+5,98\)
Ta có \(\hept{\begin{cases}-\left(x+\frac{1}{6}\right)^{26}\le0\forall x\\-\left(x+y+\frac{3}{8}\right)^{442}\le0\forall x,y\end{cases}}\Rightarrow-\left(x+\frac{1}{6}\right)^{26}-\left(x+y+\frac{3}{8}\right)+5,98\le5,98\)
Đẳng thức xảy ra <=> \(\hept{\begin{cases}x+\frac{1}{6}=0\\x+y+\frac{3}{8}=0\end{cases}}\Rightarrow\hept{\begin{cases}x=-\frac{1}{6}\\y=-\frac{5}{24}\end{cases}}\)
=> MaxB = 5, 98 <=> x = -1/6 ; y = -5/24
tìm x, y để M = ( x + 1/8 )^26 + ( x - y - 3/8 )^252 + 59,8 đạt giá trị lớn nhất
1,
A, 2017-|-26|×|-2³|+12
b M=26+|-x| .y -18 với x=12,y=6
2,tìm x
a x=|-32|
b 26-3 |x|=8
c |x-1|=6-|-6|
Giúp mk vs mk đag cần gấp.
tìm x,y,z biết:
a/ x/2 = y/3 ; y/5 = z/4 và x+y-z= -26
b/ x/1 = y/2 = z/3 và 4x - 3y + 2z =36
c/ x/4 = y/8 và xy=128
b) Ta có: \(\frac{x}{1}=\frac{y}{2}=\frac{z}{3}.\)
=> \(\frac{4x}{4}=\frac{3y}{6}=\frac{2z}{6}\) và \(4x-3y+2z=36.\)
Áp dụng tính chất dãy tỉ số bằng nhau ta được:
\(\frac{4x}{4}=\frac{3y}{6}=\frac{2z}{6}=\frac{4x-3y+2z}{4-6+6}=\frac{36}{4}=9.\)
\(\Rightarrow\left\{{}\begin{matrix}\frac{x}{1}=9\Rightarrow x=9.1=9\\\frac{y}{2}=9\Rightarrow y=9.2=18\\\frac{z}{3}=9\Rightarrow z=9.3=27\end{matrix}\right.\)
Vậy \(\left(x;y;z\right)=\left(9;18;27\right).\)
c) Ta có: \(\frac{x}{4}=\frac{y}{8}.\)
=> \(\frac{x}{4}=\frac{y}{8}\) và \(x.y=128.\)
Đặt \(\frac{x}{4}=\frac{y}{8}=k\Rightarrow\left\{{}\begin{matrix}x=4k\\y=8k\end{matrix}\right.\)
Có: \(x.y=128\)
=> \(4k.8k=128\)
=> \(32.k^2=128\)
=> \(k^2=128:32\)
=> \(k^2=4\)
=> \(k=\pm2.\)
TH1: \(k=2.\)
\(\Rightarrow\left\{{}\begin{matrix}x=4.2=8\\y=8.2=16\end{matrix}\right.\)
TH2: \(k=-2.\)
\(\Rightarrow\left\{{}\begin{matrix}x=4.\left(-2\right)=-8\\y=8.\left(-2\right)=-16\end{matrix}\right.\)
Vậy \(\left(x;y\right)=\left(8;16\right),\left(-8;-16\right).\)
Chúc bạn học tốt!
Tìm x;y
\(\dfrac{x+y}{5}=\dfrac{x-y}{8}=\dfrac{x\cdot y}{26}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\dfrac{x+y}{5}=\dfrac{x-y}{8}=\dfrac{x+y+x-y}{5+8}=\dfrac{2x}{13}=\dfrac{4x}{26}\)
Ta có :
\(\dfrac{x+y}{5}=\dfrac{xy}{26}=\dfrac{4x}{26}\)
\(\Leftrightarrow y=4\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\dfrac{x+y}{5}=\dfrac{x-y}{8}=\dfrac{x+y-x-y}{5-6}=\dfrac{2y}{-3}\)
\(\Leftrightarrow\dfrac{xy}{26}=\dfrac{2y}{-3}\)
\(\Leftrightarrow-3xy=y52\)
\(\Leftrightarrow-3x=52\)
\(\Leftrightarrow x=\dfrac{-52}{3}\)
Vậy \(\left\{{}\begin{matrix}x=\dfrac{-52}{3}\\y=4\end{matrix}\right.\) là giá trị cần tìm