Hãy giải bài toán trong phần mở đầu.
Giải bài toán nêu trong phần mở đầu.
Độ dài đèo Hải Vân là:
\(6,28:\frac{{157}}{{500}} = \frac{{157}}{{25}}.\frac{{500}}{{157}} = \frac{{3135}}{{157}} \approx 20\,\left( {km} \right)\)
Hãy tính chiều cao h của đỉnh Lũng Cú so với chân núi trong bài toán ở phần mở đầu.
\(\left\{ \begin{array}{l}\widehat {ACH} = {45^o}\\\widehat {BCH} = {50^o}\end{array} \right.\) (hai góc đồng vị)
Mà \(\tan \widehat {ACH} = \frac{{AH}}{{CH}} \Rightarrow \tan {45^o} = \frac{h}{{CH}} \Leftrightarrow CH = h\)
Lại có: \(\tan \widehat {BCH} = \frac{{BH}}{{CH}} \Rightarrow \tan {50^o} = \frac{{h + 20,25}}{h}\)
\(\begin{array}{l} \Leftrightarrow h.\tan {50^o} = h + 20,25\\ \Leftrightarrow h = \frac{{20,25}}{{\tan {{50}^o} - 1}} \approx 105,6\end{array}\)
Vậy chiều cao của đỉnh Lũng cú so với chân núi là khoảng 105,6m.
Giải thích bài toán ở phần mở đầu.
Xét hai tam giác ABC và ABD có: \(\widehat {CAB} = \widehat {DAB} = 60^\circ ,\widehat {ABC} = \widehat {ABD} = 45^\circ \), AB chung.
Vậy \(\Delta ABC = \Delta ABD\) (g.c.g).
Suy ra AC = AD và BC = BD ( 2 cạnh tương ứng)
Trong bài toán nêu ở phần mở đầu, hãy tính độ nghiêng của tòa tháp Capital Gate so với phương nằm ngang.
Góc tạo bởi tòa tháp Capital Gate so với phương nằm ngang (mặt đất) là góc \(\widehat B\).
Ta có:
\(\widehat B + 90^\circ + 18^\circ = 180^\circ \) (tổng ba góc của một tam giác).
Suy ra: \(\widehat B = 180^\circ - 90^\circ - 18^\circ = 72^\circ \)
Vậy góc tạo bởi tòa tháp Capital Gate so với phương nằm ngang có số đo là 72°.
Giải bài toán trong tình huống mở đầu.
Ta có: \(f\left( t \right) = {f_1}\left( t \right) + {f_2}\left( t \right) = 5\sin t + 5\cos t = 5\left( {\sin t + \cos t} \right) = 5\sqrt 2 \sin \left( {t + \frac{\pi }{4}} \right)\)
Suy ra: \(k = 5\sqrt 2 ,\;\varphi = \frac{\pi }{4}\).
Giải bài toán trong tình huống mở đầu.
Ta có \(P\left( F \right) = \frac{{n\left( F \right)}}{{n\left( \Omega \right)}} = \frac{1}{{C_{45}^6}} = \frac{1}{{8145060}}\) và \(P\left( G \right) = \frac{{n\left( G \right)}}{{n\left( \Omega \right)}} = \frac{{234}}{{C_{45}^6}} = \frac{{39}}{{1357510}}\).
Ở bài toán mở đầu, em hãy giải thích xem bạn đó tính nhanh như thế nào.
Bạn ấy áp dụng hđt hiệu hai bình phương
Giải phương trình được nêu trong bài toán mở đầu.
+) Vệ tinh cách mặt đất 1 000 km thì h=1 000
Khi đó
\(\begin{array}{l}1000 = 550 + 450.\cos \frac{\pi }{{50}}t\\ \Leftrightarrow \cos \frac{\pi }{{50}}t = 1\\ \Leftrightarrow \cos \frac{\pi }{{50}}t = \cos 0\\ \Leftrightarrow \frac{\pi }{{50}}t = 0 + k2\pi \\ \Leftrightarrow t = 100.k\,\,\,\,;k \in N*\end{array}\)
+) Vệ tinh cách mặt đất 250 km thì h=250
Khi đó
\(\begin{array}{l}250 = 550 + 450.\cos \frac{\pi }{{50}}t\\ \Leftrightarrow \cos \frac{\pi }{{50}}t = - \frac{2}{3}\\ \Leftrightarrow \left[ \begin{array}{l}\frac{\pi }{{50}}t = \arccos \left( { - \frac{2}{3}} \right) + k2\pi \\\frac{\pi }{{50}}t = - \arccos \left( { - \frac{2}{3}} \right) + k2\pi \end{array} \right.\\ \Leftrightarrow \left[ \begin{array}{l}t = \frac{{50}}{\pi }\left[ {\arccos \left( { - \frac{2}{3}} \right) + k2\pi } \right]\\t = \frac{{50}}{\pi }\left[ { - \arccos \left( { - \frac{2}{3}} \right) + k2\pi } \right]\end{array} \right.;k \in N*\end{array}\)
+) Vệ tinh cách mặt đất 100 km thì h=100
Khi đó
\(\begin{array}{l}100 = 550 + 450.\cos \frac{\pi }{{50}}t\\ \Leftrightarrow \cos \frac{\pi }{{50}}t = - 1\\ \Leftrightarrow \cos \frac{\pi }{{50}}t = \cos \pi \\ \Leftrightarrow \frac{\pi }{{50}}t = \pi + k2\pi \\ \Leftrightarrow t = 50 + 100k\,\,\,\,;k \in N*\end{array}\)
Trong bài toán mở đầu, hãy chỉ ra một số giá trị của x để ông đựng nước cách mặt nước 2m.
Để ống đựng nước cách mặt nước 2m thì \(h = \left| y \right| = 2\)
Hay \(\left| {2,5.\sin \left( {2\pi x - \frac{\pi }{2}} \right) + 2} \right| = 2\)
Suy ra \(2,5.\sin \left( {2\pi x - \frac{\pi }{2}} \right) + 2 = 2\) hoặc \(2,5.\sin \left( {2\pi x - \frac{\pi }{2}} \right) + 2 = - 2\)
*) \(2,5.\sin \left( {2\pi x - \frac{\pi }{2}} \right) + 2 = 2\\ \Leftrightarrow \sin \left( {2\pi x - \frac{\pi }{2}} \right) = 0\\ \Leftrightarrow 2\pi x - \frac{\pi }{2} = k\pi ,k \in Z\\ \Leftrightarrow 2x - \frac{1}{2} = k,k \in Z\\ \Leftrightarrow x = \frac{{2k + 1}}{4},k \in Z\\ \Leftrightarrow x \in \left\{ {....; - \frac{1}{4};\frac{1}{4};\frac{3}{4};....} \right\}\)
*)\(2,5.\sin \left( {2\pi x - \frac{\pi }{2}} \right) + 2 = - 2\\ \Leftrightarrow \sin \left( {2\pi x - \frac{\pi }{2}} \right) = - 1,6\, < - 1\)
Vì tập giá trị của hàm số sin là \(\left[ { - 1;1} \right]\) nên trong trường hợp này phương trình vô nghiệm.