cho tam giác ABC gọi D là trung điểm của cạnh Ab trên cạnh BC lấy các điểm È sao cho BE=EF=FC trên tia đối của BA lấy điểm S sao cho BS=BD CMR các đường thảng AF,CD,SE đồng qui
Cho tam giác ABC có D là trung điểm của AB. Trên cạnh BC lấy 2 điểm E, F sao cho BE = EF = FC . Trên tia đối của tia ba lấy điểm H sao cho BH = BD. Chứng minh CD, HE, AF đồng quy
Cho tam giác ABC cho D là trug điểm của AB. Lấy E và F là điểm nằm trên BC sao cho BE = EF = FC . Lấy điểm H trên tia đối của tia BA sao cho HB = BD . Chứng minh CD và AF và HE đồng quy
Cho tam giác ABC vuông tại acos phân giác BD ( D thuộc AC) . Trên cạnh BC lấy điểm E sao cho AB= BE .Trên tia đối của tia AB lấy điểm f sao cho Af= EG gọi I là giao điểm của BD với Fc .CM
a, tam giác ABD = tam gác EBD và DE vuông góc BC
B, BD là đường trung trực của đoạn thẳng AE
c, BA điểm D,E,F thẳng hàng
d, Điểm d cách đều ba cạnh của tam giác AEI
Cho tam giác ABC vuông tại A có phân giác BD ( D thuộc AC). Trên cạnh BC lấy điểm E sao cho AE = BE. Trên tia đối của tia AB lấy điểm F sao cho AF = EC. Gọi I là giao điểm của BD và FC. Chứng minh rằng:
a) Tam giác ABD = Tam giác EBD
b) DE vuông góc với BC
c) BD là trung trực của đoạn thẳng AE
d) Ba điểm D , E , F thẳng hàng
e) Điểm D cách đều ba cạnh của tam giác AEI
a: Xét ΔBAD và ΔBED có
BA=BE
góc ABD=góc EBD
BD chung
=>ΔBAD=ΔBED
b: ΔBAD=ΔBED
=>góc BED=90 độ
=>DE vuông góc CB
c: BA=BE
DA=DE
=>BD là trung trực của AE
d: Xét ΔDAF vuông tại A và ΔDEC vuông tại E có
DA=DE
AF=EC
=>ΔDAF=ΔDEC
=>góc ADF=góc EDC
=>góc ADF+góc ADE=180 độ
=>F,D,E thẳng hàng
Cho tam giác ABC vuông tại A Trên cạnh BC lấy điểm E sao cho BE=BA qua E kẻ đường vuông góc với BC cắt cạnh AC tại D trên tia đối của tia AB lấy điểm F sao cho AF=EC c/m a) BD là tia phân giác của góc B b)BD là đường trung trực của AE c) 3 điểm EDF thẳng hàng
a: Xét ΔBAD vuông tại A và ΔBED vuông tại E có
BD chung
BA=BE
=>ΔBAD=ΔBED
=>góc ABD=góc EBD
=>BD là phân giác của góc ABE
b: BA=BE
DA=DE
=>BD là trung trực của AE
Cho Tam giác ABC vuông tại A,BD là phân giác của ABC (D thuộc Ac) Trên cạnh BC lấy điểm E sao cho BE=BA a. Chứng minh AD=DE b. Trên tia đối của tia AB lấy điểm F sao cho AF=EC chứng minh BD vg với FC c. Chứng minh AE song song với FC d. Chứng minh 3 đ D,E,F thẳng hàng ;-; ai cứu t zới nhanh lên ạ
a: Xét ΔBAD và ΔBED có
BA=BE
góc ABD=góc EBD
BD chung
Do đo: ΔBAD=ΔBED
=>DA=DE
b,c: Xét ΔBFC có BA/AF=BE/EC
nên AE//FC
BA=BE
DA=DE
Do đó; BD là trung trực của AE
=>BD vuông góc với AE
=>BD vuông góc với FC
d: Xét ΔDAF vuông tại A và ΔDEC vuông tại E có
DA=DE
góc ADF=góc EDC
Do đó: ΔDAF=ΔDEC
=>góc ADF=góc EDC
=>góc ADF+góc ADE=180 độ
=>D,E,F thẳng hàng
cho tam giác ABC . gọi E,D lần lượt là trung điểm của các cạnh AB, AC. trên tia đối tia BD lấy điểm M sao cho DM=DB. Trên tia đối của tia EC lấy điểm N sao cho EN = EC. Cmr: a, AM//BC b, Ba điểm M,A,N thẳng hàng c, AB+BC>2BD
a Xét tứ giác ABCM có
D là trung điểm chun của AC và BM
=>ABCM là hình bình hành
=>AM//BC và AM=BC
b: Xét tứ giác ANBC có
E là trung điểm chung của AN và BC
=>ANBC là hình bình hành
=>AN//BC và AN=BC
=>M,A,N thẳng hàng
Cho tam giác ABC vuông tại A có phân giác BD ( D thuộc AC). Trên cạnh BC lấy điểm E sao cho AB=BE. Trên tia đối của tia AB lấy điểm F sao cho AF=EC. Gọi I là giao điểm của BD và FC. Chứng minh rằng:
a) Tam giác ABC = Tam giác EBD, DE vuông góc với BC
B)BD là đường trung trực cỉa đoạn thẳng AE
C) Ba điểm D,E,F thẳng hàng
d) Tính độ dài đoạn thẳng FC khi AC=5cm, góc ACB= = 300
Cho tam giác ABC nhọn .Lấy D trên cạnh BC sao cho BD <DC.Vẽ DE // AB (E thuộc AC);Vẽ EF//BC(F thuộc AB).Gọi M là trung điểm của DC.Trên tia đối của tia ME lấy N sao cho ME =MN. a) C/M EF=BD. b)C/M tam giác CMN= tam giác DME, suy ra CN //AB c) Trên cạnh BA Lấy I sao cho BI =AF . C/m góc IBD = góc ECD