Tính:
a)\(\left( { - 3,5} \right).\left( {1\frac{3}{5}} \right);\) b) \(\frac{{ - 5}}{9}.\left( { - 2\frac{1}{2}} \right).\)
Tính:
a)\({\left( {\frac{2}{5} + \frac{1}{2}} \right)^2}\); b)\({\left( {0,75 - 1\frac{1}{2}} \right)^3};\)
c)\({\left( {\frac{3}{5}} \right)^{15}}:{\left( {0,36} \right)^5}\); d)\({\left( {1 - \frac{1}{3}} \right)^8}:{\left( {\frac{4}{9}} \right)^3}\)
a)\({\left( {\frac{2}{5} + \frac{1}{2}} \right)^2} = {\left( {\frac{4}{{10}} + \frac{5}{{10}}} \right)^2} = {\left( {\frac{9}{{10}}} \right)^2} = \frac{{81}}{{100}}\);
b)\({\left( {0,75 - 1\frac{1}{2}} \right)^3} = {\left( {\frac{3}{4} - \frac{3}{2}} \right)^3} = {\left( {\frac{3}{4} - \frac{6}{4}} \right)^3} = {\left( { - \frac{3}{4}} \right)^3} = \frac{{ - 27}}{{64}};\)
c)
\(\begin{array}{l}{\left( {\frac{3}{5}} \right)^{15}}:{\left( {0,36} \right)^5} = {\left( {\frac{3}{5}} \right)^{15}}:{\left( {\frac{9}{{25}}} \right)^5}\\ = {\left( {\frac{3}{5}} \right)^{15}}:{\left[ {{{\left( {\frac{3}{5}} \right)}^2}} \right]^5} = {\left( {\frac{3}{5}} \right)^{15}}:{\left( {\frac{3}{5}} \right)^{10}} = {\left( {\frac{3}{5}} \right)^5}\end{array}\)
d) \({\left( {1 - \frac{1}{3}} \right)^8}:{\left( {\frac{4}{9}} \right)^3} = {\left( {\frac{3}{3} - \frac{1}{3}} \right)^8}:{\left( ({\frac{2}{3}})^2 \right)^3}\\= {\left( {\frac{2}{3}} \right)^8}:{\left( {\frac{2}{3}} \right)^6} = {\left( {\frac{2}{3}} \right)^{8-6}}\\= {\left( {\frac{2}{3}} \right)^2} = \frac{4}{9}\)
Tính:
a) \(\left( {\frac{3}{4}:1\frac{1}{2}} \right) - \left( {\frac{5}{6}:\frac{1}{3}} \right)\)
b) \(\left[ {\left( {\frac{{ - 1}}{5}} \right):\frac{1}{{10}}} \right] - \frac{5}{7}.\left( {\frac{2}{3} - \frac{1}{5}} \right)\)
c) \(\left( { - 0,4} \right) + 2\frac{2}{5}.{\left[ {\left( {\frac{{ - 2}}{3}} \right) + \frac{1}{2}} \right]^2}\)
d)\(\left\{ {\left[ {{{\left( {\frac{1}{{25}} - 0,6} \right)}^2}:\frac{{49}}{{125}}} \right].\frac{5}{6}} \right\} - \left[ {\left( {\frac{{ - 1}}{3}} \right) + \frac{1}{2}} \right]\)
a)
\(\begin{array}{l}\left( {\frac{3}{4}:1\frac{1}{2}} \right) - \left( {\frac{5}{6}:\frac{1}{3}} \right)\\ = \left( {\frac{3}{4}:\frac{3}{2}} \right) - \left( {\frac{5}{6}.3} \right)\\ = \left( {\frac{3}{4}.\frac{2}{3}} \right) - \frac{5}{2}\\ = \frac{1}{2} - \frac{5}{2}\\ = \frac{-4}{2}\\= - 2.\end{array}\)
b)
\(\begin{array}{l}\left[ {\left( {\frac{{ - 1}}{5}} \right):\frac{1}{{10}}} \right] - \frac{5}{7}.\left( {\frac{2}{3} - \frac{1}{5}} \right)\\ = \left( {\frac{{ - 1}}{5}} \right).10 - \frac{5}{7}.\left( {\frac{{10}}{{15}} - \frac{3}{{15}}} \right)\\ = - 2 - \frac{5}{7}.\frac{7}{{15}}\\ = - 2 - \frac{1}{3}\\ = \frac{{ - 6}}{3} - \frac{1}{3}\\ = \frac{{ - 7}}{3}\end{array}\)
c)
\(\begin{array}{l}\left( { - 0,4} \right) + 2\frac{2}{5}.{\left[ {\left( {\frac{{ - 2}}{3}} \right) + \frac{1}{2}} \right]^2}\\ = \left( { - \frac{2}{5}} \right) + \frac{{12}}{5}.{\left[ {\left( {\frac{{ - 4}}{6}} \right) + \frac{3}{6}} \right]^2}\\ = \left( { - \frac{2}{5}} \right) + \frac{{12}}{5}.{\left( {\frac{{ - 1}}{6}} \right)^2}\\ = \left( { - \frac{2}{5}} \right) + \frac{{12}}{5}.\frac{1}{{36}}\\ = \left( { - \frac{2}{5}} \right) + \frac{1}{{15}}\\ = \left( { - \frac{6}{{15}}} \right) + \frac{1}{{15}}\\ = \frac{{ - 5}}{{15}}\\ = \frac{{ - 1}}{3}\end{array}\)
d)
\(\begin{array}{l}\left\{ {\left[ {{{\left( {\frac{1}{{25}} - 0,6} \right)}^2}:\frac{{49}}{{125}}} \right].\frac{5}{6}} \right\} - \left[ {\left( {\frac{{ - 1}}{3}} \right) + \frac{1}{2}} \right]\\ = \left\{ {\left[ {{{\left( {\frac{1}{{25}} - \frac{3}{5}} \right)}^2}.\frac{{125}}{{49}}} \right].\frac{5}{6}} \right\} - \left[ {\left( {\frac{{ - 2}}{6}} \right) + \frac{3}{6}} \right]\\ = \left\{ {\left[ {{{\left( {\frac{{ 1}}{{25}}-\frac{15}{25}} \right)}^2}.\frac{{125}}{{49}}} \right].\frac{5}{6}} \right\} - \frac{1}{6}\\ = \left\{ {\left[ {{{\left( {\frac{{ - 14}}{{25}}} \right)}^2}.\frac{{125}}{{49}}} \right].\frac{5}{6}} \right\} - \frac{1}{6}\\ = \left\{ {\frac{{196}}{{{{25}^2}}}.\frac{{25.5}}{{49}}.\frac{5}{6}} \right\} - \frac{1}{6}\\ = \left( {\frac{{4.49.25.5.5}}{{{{25}^2}.49.6}}} \right) - \frac{1}{6}\\ = \frac{4}{6} - \frac{1}{6}\\ = \frac{3}{6}\\ = \frac{1}{2}\end{array}\)
Bỏ dấu ngoặc rồi tính:
a)\(\left( {\frac{{ - 3}}{7}} \right) + \left( {\frac{5}{6} - \frac{4}{7}} \right);\)
b)\(\frac{3}{5} - \left( {\frac{2}{3} + \frac{1}{5}} \right);\)
c)\(\left[ {\left( {\frac{{ - 1}}{3} + 1} \right) - \left( {\frac{2}{3} - \frac{1}{5}} \right)} \right];\)
d)\(1\frac{1}{3} + \left( {\frac{2}{3} - \frac{3}{4}} \right) - \left( {0,8 + 1\frac{1}{5}} \right)\).
a)
\(\begin{array}{l}\left( {\frac{{ - 3}}{7}} \right) + \left( {\frac{5}{6} - \frac{4}{7}} \right)\\ = \left( {\frac{{ - 3}}{7}} \right) + \frac{5}{6} - \frac{4}{7}\\ = \left[ {\left( {\frac{{ - 3}}{7}} \right) - \frac{4}{7}} \right] + \frac{5}{6}\\ =\frac{-7}{7}+\frac{5}{6}\\= - 1 + \frac{5}{6}\\ = \frac{{ - 1}}{6}\end{array}\)
b)
\(\begin{array}{l}\frac{3}{5} - \left( {\frac{2}{3} + \frac{1}{5}} \right)\\ = \frac{3}{5} - \frac{2}{3} - \frac{1}{5}\\ = (\frac{3}{5} - \frac{1}{5}) - \frac{2}{3}\\ = \frac{2}{5} - \frac{2}{3}\\ = \frac{6}{{15}} - \frac{{10}}{{15}}\\ = \frac{{ - 4}}{{15}}\end{array}\)
c)
\(\begin{array}{l}\left[ {\left( {\frac{{ - 1}}{3}} \right) + 1} \right] - \left( {\frac{2}{3} - \frac{1}{5}} \right)\\ = \left( {\frac{{ - 1}}{3}} \right) + 1 - \frac{2}{3} + \frac{1}{5}\\ = \left( {\frac{{ - 1}}{3} - \frac{2}{3}} \right) + 1 + \frac{1}{5}\\ = \frac{-3}{3}+1+\frac{1}{5}\\= - 1 + 1 + \frac{1}{5}\\ = \frac{1}{5}\end{array}\)
d)
\(\begin{array}{l}1\frac{1}{3} + \left( {\frac{2}{3} - \frac{3}{4}} \right) - \left( {0,8 + 1\frac{1}{5}} \right)\\ = 1 + \frac{1}{3} + \frac{2}{3} - \frac{3}{4} - \left( {\frac{4}{5} + 1 + \frac{1}{5}} \right)\\=1+\frac{3}{3}-\frac{3}{4}-(\frac{5}{5}+1)\\ = 1 + 1 - \frac{3}{4} - (1+1)\\ = - \frac{3}{4}\end{array}\).
Tính:
a)\(1\frac{1}{2} + \frac{1}{5}.\left[ {\left( { - 2\frac{5}{6} + \frac{1}{3}} \right)} \right];\)
b)\(\frac{1}{3}.\left( {\frac{2}{5} - \frac{1}{2}} \right):{\left( {\frac{1}{6} - \frac{1}{5}} \right)^2}.\)
a)
\(\begin{array}{l}1\frac{1}{2} + \frac{1}{5}.\left[ {\left( { - 2\frac{5}{6} + \frac{1}{3}} \right)} \right]\\ = \frac{3}{2} + \frac{1}{5}.\left[ {\left( { - \frac{{17}}{6} + \frac{2}{6}} \right)} \right]\\ = \frac{3}{2} + \frac{1}{5}.\frac{{ - 15}}{6}\\ = \frac{3}{2} + \frac{{ - 1}}{2}\\ = \frac{2}{2}\\=1\end{array}\)
b)
\(\begin{array}{l}\frac{1}{3}.\left( {\frac{2}{5} - \frac{1}{2}} \right):{\left( {\frac{1}{6} - \frac{1}{5}} \right)^2}\\ = \frac{1}{3}.\left( {\frac{4}{{10}} - \frac{5}{{10}}} \right):{\left( {\frac{5}{{30}} - \frac{6}{{30}}} \right)^2}\\ = \frac{1}{3}.\frac{{ - 1}}{{10}}:{\left( {\frac{{ - 1}}{{30}}} \right)^2}\\ = \frac{{ - 1}}{{30}}:\frac{1}{{{{30}^2}}}\\ = \frac{{ - 1}}{{30}}{.30^2}\\ = - 30\end{array}\)
Tính:
a) \({\left( {\frac{1}{5}} \right)^{ - 2}};\)
b) \({4^{\frac{3}{2}}};\)
c) \({\left( {\frac{1}{8}} \right)^{ - \frac{2}{3}}};\)
d) \({\left( {\frac{1}{{16}}} \right)^{ - 0,75}}.\)
a: \(\left(\dfrac{1}{5}\right)^{-2}=25\)
b: \(4^{\dfrac{3}{2}}=8\)
c: \(\left(\dfrac{1}{8}\right)^{-\dfrac{2}{3}}=\left(\dfrac{1}{2}\right)^{3\cdot\dfrac{-2}{3}}=\left(\dfrac{1}{2}\right)^{-2}=4\)
d: \(\left(\dfrac{1}{16}\right)^{-0.75}=\left(\dfrac{1}{2}\right)^{4\cdot\left(-0.75\right)}=\left(\dfrac{1}{2}\right)^{-3}=8\)
Tính:
a)\(\frac{3}{7}.\left( { - \frac{1}{9}} \right) + \frac{3}{7}.\left( { - \frac{2}{3}} \right);\)
b)\(\left( {\frac{{ - 7}}{{13}}} \right).\frac{5}{{12}} + \left( {\frac{{ - 7}}{{13}}} \right).\frac{7}{{12}} + \left( {\frac{{ - 6}}{{13}}} \right);\)
c)\(\left[ {\left( {\frac{{ - 2}}{3} + \frac{3}{7}} \right)} \right]:\frac{5}{9} + \left( {\frac{4}{7} - \frac{1}{3}} \right):\frac{5}{9}\)
d)\(\frac{5}{9}:\left( {\frac{1}{{11}} - \frac{5}{{22}}} \right) + \frac{5}{9}:\left( {\frac{1}{{15}} - \frac{2}{3}} \right);\)
e) \(\frac{3}{5} + \frac{3}{{11}} - \left( {\frac{{ - 3}}{7}} \right) + \left( {\frac{{ - 2}}{{97}}} \right) - \frac{1}{{35}} - \frac{3}{4} + \left( {\frac{{ - 23}}{{44}}} \right)\)
a)
\(\begin{array}{l}\frac{3}{7}.\left( { - \frac{1}{9}} \right) + \frac{3}{7}.\left( { - \frac{2}{3}} \right)\\ = \frac{3}{7}.\left( { - \frac{1}{9} + \frac{-2}{3}} \right)\\ = \frac{3}{7}.\left( { - \frac{1}{9} - \frac{6}{9}} \right)\\ = \frac{3}{7}.\frac{{ - 7}}{9} = \frac{{ - 1}}{3}\end{array}\)
b)
\(\begin{array}{l}\left( {\frac{{ - 7}}{{13}}} \right).\frac{5}{{12}} + \left( {\frac{{ - 7}}{{13}}} \right).\frac{7}{{12}} + \left( {\frac{{ - 6}}{{13}}} \right)\\ = \frac{{ - 7}}{{13}}.\left( {\frac{5}{{12}} + \frac{7}{{12}}} \right) + \left( {\frac{{ - 6}}{{13}}} \right)\\ = \frac{{ - 7}}{{13}}.1 + \left( {\frac{{ - 6}}{{13}}} \right)\\ = \frac{{ - 7}}{{13}} + \left( {\frac{{ - 6}}{{13}}} \right)\\ = \frac{{ - 13}}{{13}}\\ = -1\end{array}\)
c)
\(\begin{array}{l}\left[ {\left( {\frac{{ - 2}}{3} + \frac{3}{7}} \right)} \right]:\frac{5}{9} + \left( {\frac{4}{7} - \frac{1}{3}} \right):\frac{5}{9}\\ = \left[ {\left( {\frac{{ - 2}}{3} + \frac{3}{7}} \right)} \right].\frac{9}{5} + \left( {\frac{4}{7} - \frac{1}{3}} \right).\frac{9}{5}\\ = \left( {\frac{{ - 2}}{3} + \frac{3}{7} + \frac{4}{7} - \frac{1}{3}} \right).\frac{9}{5}\\ = \left[ {\left( {\frac{{ - 2}}{3} - \frac{1}{3}} \right) + \left( {\frac{3}{7} + \frac{4}{7}} \right)} \right].\frac{9}{5}\\ = \left( { - 1 + 1} \right).\frac{9}{5}\\ = 0.\frac{9}{5} = 0\end{array}\)
d)
\(\begin{array}{l}\frac{5}{9}:\left( {\frac{1}{{11}} - \frac{5}{{22}}} \right) + \frac{5}{9}:\left( {\frac{1}{{15}} - \frac{2}{3}} \right)\\ = \frac{5}{9}:\left( {\frac{2}{{22}} - \frac{5}{{22}}} \right) + \frac{5}{9}:\left( {\frac{1}{{15}} - \frac{{10}}{{15}}} \right)\\ = \frac{5}{9}:\frac{{ - 3}}{{22}} + \frac{5}{9}:\frac{{ - 9}}{15}\\= \frac{5}{9}:\frac{{ - 3}}{{22}} + \frac{5}{9}:\frac{{ - 3}}{5}\\ = \frac{5}{9}.\frac{{ - 22}}{3} + \frac{5}{9}.\frac{{ - 5}}{3}\\ = \frac{5}{9}.\left( {\frac{{ - 22}}{3} - \frac{5}{3}} \right)\\ = \frac{5}{9}.\frac{-27}{3}= \frac{5}{9}.\left( { - 9} \right) = - 5\end{array}\)
e)
\(\begin{array}{l}\frac{3}{5} + \frac{3}{{11}} - \left( {\frac{{ - 3}}{7}} \right) + \left( {\frac{{ - 2}}{{97}}} \right) - \frac{1}{{35}} - \frac{3}{4} + \left( {\frac{{ - 23}}{{44}}} \right)\\ = \frac{3}{5} + \frac{3}{{11}} + \frac{3}{7} - \frac{2}{{97}} - \frac{1}{{35}} - \frac{3}{4} - \frac{{23}}{{44}}\\ = \left( {\frac{3}{5} + \frac{3}{7} - \frac{1}{{35}}} \right) + \left( {\frac{3}{{11}} - \frac{3}{4} - \frac{{23}}{{44}}} \right) - \frac{2}{{97}}\\ = \left( {\frac{{21}}{{35}} + \frac{{15}}{{35}} - \frac{1}{{35}}} \right) + \left( {\frac{{12}}{{44}} - \frac{{33}}{{44}} - \frac{{23}}{{44}}} \right) - \frac{2}{{97}}\\ = \frac{35}{{35}}+ \frac{-44}{{44}}- \frac{2}{{97}}\\= 1 + \left( { - 1} \right) - \frac{2}{{97}}\\ = - \frac{2}{{97}}\end{array}\)
Tính:
a)\(\left[ {{{\left( {\frac{3}{7}} \right)}^4}.{{\left( {\frac{3}{7}} \right)}^5}} \right]:{\left( {\frac{3}{7}} \right)^7};\)
b)\(\left[ {{{\left( {\frac{7}{8}} \right)}^5}:{{\left( {\frac{7}{8}} \right)}^4}} \right].\left( {\frac{7}{8}} \right);\)
c)\(\left[ {{{\left( {0,6} \right)}^3}.{{\left( {0,6} \right)}^8}} \right]:\left[ {{{\left( {0,6} \right)}^7}.{{\left( {0,6} \right)}^2}} \right]\).
\(\begin{array}{l}a)\left[ {{{\left( {\dfrac{3}{7}} \right)}^4}.{{\left( {\dfrac{3}{7}} \right)}^5}} \right]:{\left( {\dfrac{3}{7}} \right)^7}\\ = {\left( {\dfrac{3}{7}} \right)^{4 + 5}}:{\left( {\dfrac{3}{7}} \right)^7}\\ = {\left( {\dfrac{3}{7}} \right)^9}:{\left( {\dfrac{3}{7}} \right)^7}\\ = {\left( {\dfrac{3}{7}} \right)^{9-7}}\\= {\left( {\dfrac{3}{7}} \right)^2}\\b)\left[ {{{\left( {\dfrac{7}{8}} \right)}^5}:{{\left( {\dfrac{7}{8}} \right)}^4}} \right].\left( {\dfrac{7}{8}} \right)\\ = {\left( {\dfrac{7}{8}} \right)^{5 - 4}}.\left( {\dfrac{7}{8}} \right)\\ = \left( {\dfrac{7}{8}} \right).\left( {\dfrac{7}{8}} \right)\\ = {\left( {\dfrac{7}{8}} \right)^2}\\c)\left[ {{{\left( {0,6} \right)}^3}.{{\left( {0,6} \right)}^8}} \right]:\left[ {{{\left( {0,6} \right)}^7}.{{\left( {0,6} \right)}^2}} \right]\\ = {\left( {0,6} \right)^{3 + 8}}:{\left( {0,6} \right)^{7 + 2}}\\ = {\left( {0,6} \right)^{11}}:{\left( {0,6} \right)^9}\\ = {\left( {0,6} \right)^{11-9}}\\={\left( {0,6} \right)^2}.\end{array}\)
Tính:
a)\(0,75 - \frac{5}{6} + 1\frac{1}{2};\)
b)\(\frac{3}{7} + \frac{4}{{15}} + \left( {\frac{{ - 8}}{{21}}} \right) + \left( { - 0,4} \right);\)
c)\(0,625 + \left( {\frac{{ - 2}}{7}} \right) + \frac{3}{8} + \left( {\frac{{ - 5}}{7}} \right) + 1\frac{2}{3}\)
d)\(\left( { - 3} \right).\left( {\frac{{ - 38}}{{21}}} \right).\left( {\frac{{ - 7}}{6}} \right).\left( { - \frac{3}{{19}}} \right);\)
e) \(\left( {\frac{{11}}{{18}}:\frac{{22}}{9}} \right).\frac{8}{5};\)
g)\(\left[ {\left( {\frac{{ - 4}}{5}} \right).\frac{5}{8}} \right]:\left( {\frac{{ - 25}}{{12}}} \right)\)
a)
\(\begin{array}{l}0,75 - \frac{5}{6} + 1\frac{1}{2} = \frac{3}{4} - \frac{5}{6} + \frac{3}{2}\\ = \frac{9}{{12}} - \frac{{10}}{{12}} + \frac{{18}}{{12}} = \frac{{17}}{{12}}\end{array}\)
b)
\(\begin{array}{l}\frac{3}{7} + \frac{4}{{15}} + \left( {\frac{{ - 8}}{{21}}} \right) + \left( { - 0,4} \right) = \frac{3}{7} + \frac{4}{{15}} - \frac{8}{{21}} - \frac{2}{5}\\ = \left( {\frac{3}{7} - \frac{8}{{21}}} \right) + \left( {\frac{4}{{15}} - \frac{2}{5}} \right)\\ = \left( {\frac{9}{{21}} - \frac{8}{{21}}} \right) + \left( {\frac{4}{{15}} - \frac{6}{{15}}} \right)\\ = \frac{1}{{21}} + \left( {\frac{{ - 2}}{{15}}} \right)\\ = \frac{5}{{105}} - \frac{{14}}{{105}}\\ = \frac{{ - 9}}{{105}} = \frac{{ - 3}}{{35}}\end{array}\)
c)
\(\begin{array}{l}0,625 + \left( {\frac{{ - 2}}{7}} \right) + \frac{3}{8} + \left( {\frac{{ - 5}}{7}} \right) + 1\frac{2}{3}\\ = \frac{5}{8} + \left( {\frac{{ - 2}}{7}} \right) + \frac{3}{8} - \frac{5}{7} + \frac{5}{3}\\ = \left( {\frac{5}{8} + \frac{3}{8}} \right) + \left( {\frac{{ - 2}}{7} - \frac{5}{7}} \right) + \frac{5}{3}\\ = 1 - 1 + \frac{5}{3} = \frac{5}{3}\end{array}\)
d)
\(\begin{array}{l}\left( { - 3} \right).\left( {\frac{{ - 38}}{{21}}} \right).\left( {\frac{{ - 7}}{6}} \right).\left( { - \frac{3}{{19}}} \right)\\ = \frac{{ - 3.\left( { - 38} \right).\left( { - 7} \right).\left( { - 3} \right)}}{{21.6.19}}\\ = \frac{{3.38.7.3}}{{21.6.19}}\\ = \frac{{3.2.19.7.3}}{{3.7.3.2.19}}\\ = 1\end{array}\)
e)
\(\begin{array}{l}\left( {\frac{{11}}{{18}}:\frac{{22}}{9}} \right).\frac{8}{5} = \left( {\frac{{11}}{{18}}.\frac{9}{{22}}} \right).\frac{8}{5}\\ = \frac{{11.9.4.2}}{{9.2.2.11.5}} = \frac{2}{5}\end{array}\)
g)
\(\left[ {\left( {\frac{{ - 4}}{5}} \right).\frac{5}{8}} \right]:\left( {\frac{{ - 25}}{{12}}} \right) = \frac{{ - 20}}{{40}}:\left( {\frac{{ - 25}}{{12}}} \right)\\ = \frac{{ - 1}}{2}.\frac{{ - 12}}{{25}} = \frac{6}{{25}}\)
Tính:
a)\({\left( { - 2} \right)^2}.{\left( { - 2} \right)^3}\); b)\({\left( { - 0,25} \right)^7}:{\left( { - 0,25} \right)^5}\); c)\({\left( {\frac{3}{4}} \right)^4}.{\left( {\frac{3}{4}} \right)^3}.\)
a)\({\left( { - 2} \right)^2}.{\left( { - 2} \right)^3} = {\left( { - 2} \right)^{2 + 3}} = {\left( { - 2} \right)^5}\);
b)\({\left( { - 0,25} \right)^7}:{\left( { - 0,25} \right)^5} = {\left( { - 0,25} \right)^{7 - 5}} = {\left( { - 0,25} \right)^2} = {\left( {0,25} \right)^2}\);
c)\({\left( {\frac{3}{4}} \right)^4}.{\left( {\frac{3}{4}} \right)^3} = {\left( {\frac{3}{4}} \right)^{4 + 3}} = {\left( {\frac{3}{4}} \right)^7}.\)