Thực hiện các phép chia đa thức sau:
a) (-5x3 + 15x2 + 18x) : (-5x)
b) (-2x5 – 4x3 + 3x2) : 2x2
Thực hiện các phép nhân hai đa thức sau:
a) 5x3 – 2x2 + 4x – 4 và x3 + 3x2 – 5
b) -2,5.x4 + 0,5x2 + 1 và 4x3 – 2x + 6
a) (5x3 – 2x2 + 4x – 4) . ( x3 + 3x2 – 5)
= 5x3 . ( x3 + 3x2 – 5) - 2x2 . ( x3 + 3x2 – 5) + 4x . ( x3 + 3x2 – 5) – 4 . ( x3 + 3x2 – 5)
= 5x3 . x3 + 5x3 . 3x2 + 5x3 . (-5) – [ 2x2 . x3 + 2x2 . 3x2 +2x2 . (-5)] + [4x . x3 + 4x. 3x2 + 4x . (-5)] – [ 4x3 + 4.3x2 + 4.(-5)]
= 5x6 + 15x5 – 25x3 – (2x5 + 6x4 – 10x2) + 4x4 + 12x3 – 20x – (4x3 + 12x2 – 20)
= 5x6 + 15x5 – 25x3 – 2x5 - 6x4 + 10x2 + 4x4 + 12x3 – 20x – 4x3 - 12x2 + 20
= 5x6 + (15x5 – 2x5 ) + (- 6x4 + 4x4 ) + (-25x3 + 12x3 – 4x3 ) + (10x2 - 12x2 ) – 20x + 20
= 5x6 + 13x5 – 2x4 – 17x3 -2x2 – 20x + 20
b) (-2,5.x4 + 0,5x2 + 1) . (4x3 – 2x + 6)
= -2,5.x4 . (4x3 – 2x + 6) + 0,5x2 . (4x3 – 2x + 6) + 1. (4x3 – 2x + 6)
= (-2,5.x4) . 4x3 + (-2,5.x4 ) . (-2x) + (-2,5.x4 ) . 6 + 0,5x2 . 4x3 + 0,5x2 . (-2x) + 0,5x2 . 6 + 4x3 – 2x + 6
= -10x7 + 5x5 – 15x4 + 2x5 – x3 + 3x2 + 4x3 – 2x + 6
= -10x7 + ( 5x5 + 2x5 ) - 15x4 + (– x3 + 4x3 ) + 3x2 – 2x + 6
= -10x7 +7x5 - 15x4 + 3x3 + 3x2 – 2x + 6
a) Thực hiện phép chia đa thức (2x4 - 6x3 +12x2 - 14x + 3) cho đa thức (x2 – 4x +1)
b) Thực hiện phép chia đa thức (2x4 – 5x3 + 2x2 +2x - 1) cho đa thức (x2 – x - 1)
Bài 2:
a) Tìm a để đa thức (2x4 + x3 - 3x2 + 5x + a) chia hết cho đa thức (x2 - x +1)
Bài 1:
a: \(=\dfrac{2x^4-8x^3+2x^2+2x^3-8x^2+2x+18x^2-72x+18+56x-15}{x^2-4x+1}\)
\(=2x^2+2x+18+\dfrac{56x-15}{x^2-4x+1}\)
b) Thực hiện phép chia đa thức (2x4 – 5x3 + 2x2 +2x - 1) cho đa thức (x2 – x - 1)
Bài 2:
a) Tìm a để đa thức (2x4 + x3 - 3x2 + 5x + a) chia hết cho đa thức (x2 - x +1)
b) Tìm a để đa thức x^4 - x^3 + 6x^2 chia hết cho đa thức x^2 - x + 5
b: \(=\dfrac{2x^4-2x^3-2x^2-3x^3+3x^2+3x+x^2-x-1}{x^2-x-1}\)
\(=2x^2-3x+1\)
Bài 1:Thực hiện các phép tính
a. (x5 +4x3 - 6x2):4x2
b. (x3 +x2-12) : (x-2)
c. (-2x5+3x2-4x3):2x2
d. (x3 - 64):(x2 + 4x + 16)
Bài 2:Rút gọn biểu thức
a. 3x (x - 2)- 5x (1 - x) - 8(x2 - 3)
b.(x - y) (x2 + xy + y2)+2y3
c. (x - y)2 + (x+y)2 - 2(x-y) (x+y)
a) \(\left(x^5+4x^3-6x^2\right):4x^2\)
\(=\left(x^5:4x^2\right)+\left(4x^3:4x^2\right)+\left(-6x^2:4x^2\right)\)
\(=\dfrac{1}{4}x^3+x-\dfrac{3}{2}\)
b)
Vậy \(\left(x^3+x^2-12\right):\left(x-2\right)=x^2+3x+6\)
c) (-2x5 : 2x2) + (3x2 : 2x2) + (-4x^3 : 2x^2)
= \(-x^3+\dfrac{3}{2}-2x\)
d) \(\left(x^3-64\right):\left(x^2+4x+16\right)\)
\(=\left(x-4\right)\left(x^2+4x+16\right):\left(x^2+4x+16\right)\)
\(=x-4\)
(dùng hẳng đẳng thức thứ 7)
Bài 2 :
a) 3x(x - 2) - 5x(1 - x) - 8(x2 - 3)
= 3x2 - 6x - 5x + 5x2 - 8x2 + 24
= (3x2 + 5x2 - 8x2) + (-6x - 5x) + 24
= -11x + 24
b) (x - y)(x2 + xy + y2) + 2y3
= x3 - y3 + 2y3
= x3 + y3
c) (x - y)2 + (x + y)2 - 2(x - y)(x + y)
= (x - y)2 - 2(x - y)(x + y) + (x + y)2
= [(x - y) + x + y)2 = [x - y + x + y] = (2x)2 = 4x2
Bài 1 :
a]= \(\frac{1}{4}\)x3 + x - \(\frac{3}{2}\).
b] => [x3 + x2 -12 ] = [ x2 +3 ][x-2] + [-6]
c]= -x3 -2x +\(\frac{3}{2}\).
d] = [ x3 - 64 ] = [ x2 + 4x + 16][ x- 4].
a.Phân tích đa thức sau thành nhân tử:
3xy(x-y)+5x(x-y)
b. Thực hiện phép chia đa thức 2x2+3x2+x+6 cho đa thức x+2
Thực hiện phép chia:
a) ( x 3 - 2 x 2 - 15x + 36) : (x + 4);
b) ( 2 x 4 + 2 x 3 + 3 x 2 - 5x - 20) : ( x 2 + x + 4);
c) (2 x 3 + 11 x 2 + 18x-3) : (2x + 3);
d) (2x3 + 9x2 +5x + 41) : (2x2 - x + 9).
a) Đa thức thương x 2 – 6x + 9.
b) Đa thức thương 2 x 2 – 5.
c) Đa thức thương x 2 + 4x + 3 và đa thức dư -12.
d) Đa thức x + 5 và đa thức dư x – 4.
Thực hiện phép tính - 2 x 5 + 6 x 2 - 4 x 3 : 2 x 2
Thực hiện phép chia( trình bày rõ)
a)(30x4-5x3+15x2):5x^2
B)(27x^3-1):(3x-1)
Sắp xếp các đa thức sau theo lũy thừa giảm của biến rồi thực hiện phép chia: 2 x 2 - 5 x 3 + 2 x + 2 x 4 - 1 : x 2 - x - 1