Tìm các giá trị \(x,y\in\mathbb{N}\) sao cho:
\(x+xy+y=5\)
Bài 1, Tìm giá trị nguyên x biết, E= -5-x/x-2 đạt giá trị nguyên
Bài 2, Tìm x,y thuộc N biết, 25-y^2=8x-2012^2
Bài 3, a) Tìm các số nguyên tố x,y sao cho: 51x+26y=2000
b) Tìm STN x,y biết: 7.(x-2004)^2=23-y^2
c) Tìm x,y nguyên: xy+3x-y=6
d) Tìm mọi số nguyên tố thỏa mãn: x^2+2y^2=1. ai làm nhanh hộ mk tich nha. cần mai luôn rồi. Xin trân trọng cảm ơn!
Bài 1:
Để E nguyên thì \(x+5⋮x-2\)
\(\Leftrightarrow x-2\in\left\{1;-1;7;-7\right\}\)
hay \(x\in\left\{3;1;9;-5\right\}\)
giúp mình với ạ cần luôn nhá. mk sẽ tick cho!
Tìm các giá trị x;y sao cho :xy+1=x+y
chuyển hết qua 1 vế, ta có như sau
xy + 1 - x - y =0
<=> xy - x + 1 -y =0
<=> x (y-1) - (y-1) = 0
<=> (y-1) . (x-1 ) = 0
Khi đó 2 trường hợp
y - 1 = 0 <=> y = 1
hoặc x -1 = 0 <=> x = 1
Tìm tất cả các giá trị x,y sao cho:
xy+1=x+y
\(xy+1=x+y\)
\(\Leftrightarrow xy-x-y+1=0\)
\(\Leftrightarrow x\left(y-1\right)-\left(y-1\right)\)
\(\Leftrightarrow\left(x-1\right)\left(y-1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x-1=0\\y-1=0\end{cases}\Rightarrow\orbr{\begin{cases}x=1\\y=1\end{cases}}}\)
Vậy \(x=1;y=1\)
Tìm các số nguyên x,y thỏa mãn:6xy+4x-9y-7=0
Tìm giá trị nhỏ nhất của A=x^3+y^3+xy với x,y dương thỏa mãn x+y=1
Tìm các số nguyên x,y thỏa mãn 2x^2+1/x^2+y^2/4=4 sao cho xy đạt giá trị lớn nhất
HELP !
a) \(6xy+4x-9y-7=0\)
\(\Leftrightarrow2x.\left(3y+2\right)-9y-6-1=0\)
\(\Leftrightarrow2x.\left(3y+x\right)-3.\left(3y+2\right)=1\)
\(\Leftrightarrow\left(2x-3\right).\left(3y+2\right)=1\)
Mà \(x,y\in Z\Rightarrow2x-3;3y+2\in Z\)
Tự làm típ
\(A=x^3+y^3+xy\)
\(A=\left(x+y\right)\left(x^2-xy+y^2\right)+xy\)
\(A=x^2-xy+y^2+xy\)( vì \(x+y=1\))
\(A=x^2+y^2\)
Áp dụng bất đẳng thức Bunhiakovxky ta có :
\(\left(1^2+1^2\right)\left(x^2+y^2\right)\ge\left(x\cdot1+y\cdot1\right)^2=\left(x+y\right)^2=1\)
\(\Leftrightarrow2\left(x^2+y^2\right)\ge1\)
\(\Leftrightarrow x^2+y^2\ge\frac{1}{2}\)
Hay \(x^3+y^3+xy\ge\frac{1}{2}\)
Dấu "=" xảy ra \(\Leftrightarrow x=y=\frac{1}{2}\)
Cho hàm số lôgarit \(y = {\log _2}x.\)
a) Hoàn thành bảng giá trị sau:
b) Trong mặt phẳng tọa độ Oxy, biểu diễn các điểm (x; y) trong bảng giá trị ở câu a. Bằng cách làm tương tự, lấy nhiều điểm \(\left( {x;{{\log }_2}x} \right)\) với \(x \in \mathbb{R}\) và nối lại ta được đồ thị của hàm số \(y = {\log _2}x\)
c) Từ đồ thị đã vẽ ở câu b, hãy kết luận về tập giá trị và tính chất biến thiên của hàm số \(y = {\log _2}x\)
Gọi x và y là các số nguyên sao cho \(\left|x+y\right|>\left|1+xy\right|\). Tìm tất cả các giá trị của xy, và giải thích tại sao chúng là giá trị duy nhất có thể tìm được.
\(\mathrm{Tìm\space} x,y,z\in\mathbb{N}^*\space\mathrm{biết\space} xy+yz+zx=xyz\).
Tìm các giá trị của x và y sao cho xy+=3x+2y
3x+7=28
3x =28-7
3x =21
x =21:3
x =7
Cho hàm số mũ \(y = {2^x}.\)
a) Hoàn thành bảng giá trị sau:
b) Trong mặt phẳng tọa độ Oxy, biểu diễn các điểm (x; y) trong bảng giá trị ở câu a. Bằng cách làm tương tự, lấy nhiều điểm (x; 2x) với \(x \in \mathbb{R}\) và nối lại ta được đồ thị của hàm số
c) Từ đồ thị đã vẽ ở câu b, hãy kết luận về tập giá trị và tính chất biến thiên của hàm số