Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Lú Toán, Mù Anh
Xem chi tiết
Đặng Hoài Thương
Xem chi tiết
Nguyễn Tuấn Tú
16 tháng 10 2023 lúc 17:06

a) \(A=7^{13}+7^{14}+7^{15}+7^{16}+...+7^{100}\)

\(A=\left(7^{13}+7^{14}\right)+\left(7^{15}+7^{16}\right)+...+\left(7^{99}+7^{100}\right)\)

\(A=7^{13}\left(1+7\right)+7^{15}\left(1+7\right)+...+7^{99}\left(1+7\right)\)

\(A=7^{13}.8+7^{15}.8+...+7^{99}.8\)

\(A=8.\left(7^{13}+7^{15}+...+7^{99}\right)\)

⇒ \(A⋮8\)

Vậy A chia hết cho 8 (đpcm)

Kiều Vũ Linh
16 tháng 10 2023 lúc 17:08

a) A = 7¹³ + 7¹⁴ + 7¹⁵ + 7¹⁶ + ... + 7⁹⁹ + 7¹⁰⁰

= (7¹³ + 7¹⁴) + (7¹⁵ + 7¹⁶) + ... + (7⁹⁹ + 7¹⁰⁰)

= 7¹³.(1 + 7) + 7¹⁵.(1 + 7) + ... + 7⁹⁹.(1 + 7)

= 7¹³.8 + 7¹⁵.8 + ... + 7⁹⁹.8

= 8.(7¹³ + 7¹⁵ + ... + 7⁹⁹) ⋮ 8

Vậy A ⋮ 8

b) B = 2 + 2² + 2³ + 2⁴ + ... + 2²⁰⁰

= 2 + 2² + 2³ + 2⁴ + 2⁵ + 2⁶ + 2⁷ + 2⁸ + ... + 2¹⁹⁷ + 2¹⁹⁸ + 2¹⁹⁹ + 2²⁰⁰

= (2 + 2² + 2³ + 2⁴) + (2⁵ + 2⁶ + 2⁷ + 2⁸) + ... + (2¹⁹⁷ + 2¹⁹⁸ + 2¹⁹⁹ + 2²⁰⁰)

= 30 + 2⁴.(2 + 2² + 2³ + 2⁴) + 2¹⁹⁶.(2 + 2² + 2³ + 2⁴)

= 30 + 2⁴.30 + ... + 2¹⁹⁶.30

= 30.(1 + 2⁴ + ... + 2⁹⁶)

= 5.6.(1 + 2⁴ + ... + 2¹⁹⁶) ⋮ 5

Vậy B ⋮ 5

Nguyễn Tuấn Tú
16 tháng 10 2023 lúc 17:14

\(B=2+2^2+2^3+...+2^{200}\)

\(B=\left(2+2^2\right)+\left(2^3+2^4\right)+...+\left(2^{199}+2^{200}\right)\)

\(B=1.\left(2+2^2\right)+2^2.\left(2^{ }+2^2\right)+...+2^{198}.\left(2+2^2\right)\)

\(B=1.5+2^2.5+...+2^{198}.5\)

\(B⋮5\)

Vậy B chia hết cho 5 (đpcm)

\(B=5.\left(1+2^2+...+2^{198}\right)\)

Xem chi tiết
Lấp La Lấp Lánh
12 tháng 9 2021 lúc 18:11

\(B=2+2^2+2^3+2^4+...+2^{99}+2^{100}=2\left(1+2^2+2^3+2^4\right)+...+2^{96}\left(1+2^2+2^3+2^4\right)=2.31+2^6.31+...+2^{96}.31=31\left(2+2^6+...+2^{96}\right)⋮31\)

LÊ NGUYỄN PHƯƠNG THẢO
12 tháng 9 2021 lúc 19:19

B=2+22+23+24+...+299+2100=2(1+22+23+24)+...+296(1+22+23+24)=2.31+26.31+...+296.31=31(2+26+...+296)⋮31

Nguyen Thi Cam Ly
Xem chi tiết
Lê Thị Tuyết Ngân
30 tháng 7 2017 lúc 19:50

Vậy thì n thuộc tập hợp nào bạn?

Nguyen Thi Cam Ly
30 tháng 7 2017 lúc 19:53

n e N nha pạn giải giúp mik vs

Nguyen Thi Cam Ly
30 tháng 7 2017 lúc 21:34

giúp mik vs các bạn mai mik phải nộp bài oy ^_^

Bùi Văn Lã
Xem chi tiết
Sư tử đáng yêu
31 tháng 12 2018 lúc 11:14

707 nhé 

707 : 7 = 101

7 + 0 = 7 : 7 = 1

Origami Tobichi
31 tháng 12 2018 lúc 12:06

aba là 707

Nguyễn Viết Trung Nhân
31 tháng 12 2018 lúc 15:58

aba chia hết cho 7.Vậy a x100+b x10+a chia hết cho 7 tương đương với a x101+b x10 cũng chia hết cho 7.

ax101+bx10 tương đương với ax10+bx10+ax91 chia hết cho 7=10x(a+b)+ax91 mà 91 chia hết cho 7 nên suy ra a chia hết cho 7,10x(a+b) cũng chia hết cho 7 và từ đó suy ra a+b chia hết cho 7

Trần Lê Bảo Châu
Xem chi tiết
Lê Song Phương
15 tháng 9 2023 lúc 19:38

 Cách 1: Cái này là định lý Fermat nhỏ thôi bạn. Tổng quát hơn:

 Cho số nguyên dương a và số nguyên tố p. Khi đó \(a^p\equiv a\left[p\right]\)

 Ta chứng minh định lý này bằng cách quy nạp theo a:

 Với \(a=1\) thì \(1^p\equiv1\left[p\right]\), luôn đúng.

 Giả sử khẳng định đúng đến \(a=k\left(k\inℕ^∗\right)\). Khi đó \(k^p\equiv k\left[p\right]\). Ta cần chứng minh khẳng định đúng với \(a=k+1\). Thật vậy, với \(a=k+1\), ta có:

 \(\left(k+1\right)^p=k^p+C^1_p.k^{p-1}+C^2_pk^{p-2}...+C^{p-1}_pk^1+1\)    (*)

 ((*) áp dụng khai triển nhị thức Newton, bạn có thể tìm hiểu trên mạng)

 (Ở đây kí hiệu \(C^n_m=\dfrac{m!}{n!\left(m-n\right)!}\) với \(m\ge n\) là các số tự nhiên và kí hiệu \(x!=1.2.3...x\)

 Ta phát biểu không chứng minh một bổ đề quan trọng sau: Với p là số nguyên tố thì \(C^i_p⋮p\) với mọi \(1\le i\le p-1\)

 Do đó vế phải của (*) \(\equiv k^p+1\left[p\right]\). Thế nhưng theo giả thiết quy nạp, có \(k^p\equiv k\left[p\right]\) nên \(k^p+1\equiv k+1\left[p\right]\), suy ra \(\left(k+1\right)^p\equiv k+1\left[p\right]\)

 Vậy khẳng định đúng với \(a=k+1\). Theo nguyên lí quy nạp, suy ra điều phải chứng minh. Áp dụng định lý này cho số nguyên tố \(p=7\) là xong.

 Cách 2: Đối với những số nhỏ như số 7 thì ta có thể làm bằng pp phân tích đa thức thành nhân tử để cm là được:

 \(P=a^7-a\) 

 \(P=a\left(a^6-a\right)\)

 \(P=a\left(a^3-1\right)\left(a^3+1\right)\)

 \(P=a\left(a-1\right)\left(a+1\right)\left(a^2-a+1\right)\left(a^2+a+1\right)\)

Nếu \(a⋮7,a\equiv\pm1\left[7\right]\) thì hiển nhiên \(P⋮7\)

Nếu \(a\equiv\pm2\left[7\right];a\equiv\pm3\left[7\right]\) thì \(\left(a^2-a+1\right)\left(a^2+a+1\right)⋮7\), suy ra \(P⋮7\). Vậy \(a^7-a⋮7\)

Lê Thị Hoài Thương
Xem chi tiết
Xyz OLM
2 tháng 7 2019 lúc 20:37

1) Ta có : 11a + 22b + 33c

      = 11a + 11.2b + 11.3c

      = 11.(a + 2b + 3c) \(⋮\)11

=> 11a + 22b + 33c \(⋮\)11

2) 2 + 22 + 23 + ... + 2100

= (2 + 22) + (23 + 24) + ... + (299 + 2100)

= (2 + 22) + 22.(2 + 22) + ... + 298.(2 + 22)

= 6 + 22.6 + ... + 298.6

= 6.(1 + 22 + .. + 298)

= 2.3.(1 + 22 + ... + 298\(⋮\)3

=> 2 + 22 + 23 + ... + 2100 \(⋮\)3

3) Ta có:  abcabc = abc000 + abc

 = abc x 1000 + abc 

 = abc x (1000 + 1)

= abc x 1001 

= abc .7. 13.11 (1)

= abc . 7 . 13 . 11 \(⋮\)

=> abcabc \(⋮\)7

=> Từ (1) ta có : abcabc = abc x 7.11.13 \(⋮\)11

     => abcabc \(⋮\)11

=> Từ (1) ta có :  abcabc = abc . 7.11.13 \(⋮\)           13

    => => abcabc \(⋮\)13

Nguyễn Văn Tuấn Anh
2 tháng 7 2019 lúc 20:45

1

.\(11a+22b+33c=11\left(a+2b+3c\right)⋮11\) 

\(\Rightarrow11a+22b+33c⋮11\left(đpcm\right)\) 

hc tốt

Nguyễn Trần Thùy Dương
Xem chi tiết
Tịch Hạ Hạ
Xem chi tiết
Nguyễn Ngọc Quý
1 tháng 8 2015 lúc 18:33

6410 -32 11 - 1613 = 260 - 255 - 252 = 252 . 28 - 252 . 23 - 252

= 252 ( 28 - 23 - 1) 

= 252 . 247 = 252 . 19 . 13

=> chia hết cho 19           

Tịch Hạ Hạ
1 tháng 8 2015 lúc 18:34

cảm ơn nhiều ạ

chắc là lớp 8 hay 9 rồi đúng ko ạ ?

 

SKT_ Lạnh _ Lùng
1 tháng 8 2016 lúc 17:17

6410 -32 11 - 1613 = 260 - 255 - 252 = 252 . 28 - 252 . 23 - 252

= 252 ( 28 - 23 - 1) 

= 252 . 247 = 252 . 19 . 13

=> chia hết cho 19