Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Hứa Lê Thanh Phú
Xem chi tiết
Nguyễn Lê Phước Thịnh
4 tháng 8 2023 lúc 1:39

a: ΔAHB vuông tại H có HE là đường cao

nên AE*AB=AH^2

ΔAHC vuông tại H có HF vuông góc AC

nên AF*AC=AH^2

=>AE*AB=AF*AC

b: M=5*sin^2C+5*cos^2C+2*tanB*cot B

=5+2

=7

Vũ Nhật Anh
Xem chi tiết
Nguyễn Lê Phước Thịnh
8 tháng 8 2023 lúc 19:55

a: Xét ΔABC vuông tại A và ΔHBA vuông tại H có

góc B chung

=>ΔABC đồng dạng với ΔHBA

=>BA/BH=BC/BA

=>BA^2=BH*BC

b: ΔAHB vuông tại H có HE là đường cao

nên AH^2=AE*AB

ΔAHC vuông tại H có HF là đường cao

nên AH^2=AF*AC

=>AE*AB=AF*AC

Phạm Hoàng Anh
Xem chi tiết
Nguyễn Hoàng Giang
Xem chi tiết
huỳnh thị bích thảo
Xem chi tiết
Nguyễn Lê Phước Thịnh
2 tháng 11 2021 lúc 22:18

a: CH=6cm

\(AB=\sqrt{BH\cdot BC}=4\left(cm\right)\)

\(\widehat{C}=30^0\)

Nguyễn Ngọc Anh Thư
Xem chi tiết
Tạ Duy Phương
6 tháng 10 2015 lúc 21:50

a) AEHF có 3 góc vuông nên là HCN.

Tạ Duy Phương
6 tháng 10 2015 lúc 21:51

b) Theo hệ thức lượng: AE.AB = AH; AF.AC = AH2  => AE.AB = AF.AC.

ngọc trang
Xem chi tiết
Nguyễn Lê Phước Thịnh
8 tháng 4 2023 lúc 14:35

a: Xét ΔABC vuông tại A và ΔHBA vuông tại H có

góc B chung

=>ΔABC đồng dạng vơi ΔHBA

=>BA/BH=BC/BA

=>BA^2=BH*BC

b: ΔAHB vuông tại H có HE là đường cao

nên AE*AB=AH^2

ΔAHC vuông tại H có HF là đường cao

nên AF*AC=AH^2

=>AE*AB=AF*AC

ngọc trang
Xem chi tiết
Nguyễn Lê Phước Thịnh
4 tháng 4 2023 lúc 19:37

loading...  loading...  

kietdeptrai
Xem chi tiết
Cee Hee
5 tháng 11 2023 lúc 15:17

loading...

`a)` Tỉ số lượng giác góc `B` của \(\Delta ABC\)

\(SinB=\dfrac{AC}{BC}\\ CosB=\dfrac{AB}{BC}\\ TanB=\dfrac{AC}{AB}\\ CotB=\dfrac{AB}{AC}\)

`b)` Tính `BC,AH`

Xét \(\Delta ABC\) vuông tại `A`, đường cao `AH`

Ta có: \(\dfrac{1}{AH^2}=\dfrac{1}{AB^2}+\dfrac{1}{AC^2}\left(htl\right)\)

\(\Rightarrow\dfrac{1}{AH^2}=\dfrac{1}{6^2}+\dfrac{1}{8^2}\\ \Rightarrow\dfrac{1}{AH^2}=\dfrac{25}{576}\\ \Rightarrow AH^2=\dfrac{576\cdot1}{25}=23,04\\ \Rightarrow AH=\sqrt{23,04}=4,8cm\)

Ta có: \(AB\cdot AC=AH\cdot BC\left(htl\right)\)

\(\Rightarrow6\cdot8=4,8\cdot BC\\ \Rightarrow48=4,8\cdot BC\\ \Rightarrow BC=\dfrac{48}{4,8}\\ \Rightarrow BC=10cm\)

Vậy: `AH = 4,8cm; BC= 10cm`

`c)` C/m: `AE * AB = AF * AC`

Xét \(\Delta AHB\) vuông tại `H`, đường cao `HE`

Ta có: \(AH^2=AE\cdot AB\left(htl\right)\)     `(1)`

Xét \(\Delta AHC\) vuông tại `H`, đường cao `HF`

Ta có: \(AH^2=AF\cdot AC\left(htl\right)\)     `(2)`

Từ `(1)` và `(2)` \(\Rightarrow AH^2=AH^2\)

\(\Rightarrow AE\cdot AB=AF\cdot AC\left(=AH^2\right).\)