Câu b sai đề nha e: sửa lại thành \(BE.AB.CF.AC=AH^4\)
Ta có: \(\left\{{}\begin{matrix}\widehat{AEH}=90^o\\\widehat{AFH}=90^o\\\widehat{EAF}=90^o\end{matrix}\right.\)=> tứ giác \(AEHF\) là h.c.n
=> \(\widehat{AEF}=\widehat{EAH}=\widehat{ACH}\)
Xét tam giác AEF và tam giác ACB có: \(\left\{{}\begin{matrix}\widehat{A}=90^o\left(\text{góc chung}\right)\\\widehat{AEF}=\widehat{ACB}\end{matrix}\right.\)
=> \(\Delta AEF\sim\Delta ACB\left(g.g\right)\)
\(\Rightarrow\dfrac{AE}{AF}=\dfrac{AC}{AB}\left(\text{tương ứng}\right)\) \(\Rightarrow AE.AB=AC.AF\)
Áp dụng hệ thức lượng vào tam giác AHB có: \(\left\{{}\begin{matrix}\text{đường cao HE}\\\widehat{H}=90^o\end{matrix}\right.\)
\(\Rightarrow BE.AB=BH^2\)
Áp dụng hệ thức lượng vào tam giác AHC có: \(\left\{{}\begin{matrix}\text{đường cao HF}\\\widehat{H}=90^o\end{matrix}\right.\)
\(\Rightarrow CF.CA=HC^2\)
Áp dụng hệ thức lượng vào tam giác ABC có: \(\left\{{}\begin{matrix}\text{đường cao AH}\\\widehat{A}=90^o\end{matrix}\right.\)
\(\Rightarrow HB.HC=AH^2\)\(\Rightarrow\left(HB.HC\right)^2=AH^4\)
\(\Rightarrow BE.AB.CF.AC=AH^4\)