cho tứ giác ABCD có AB= AD+ BC.Gọi O là giao điểm của các tia phân giác của các góc A và góc B. Chứng minh OC=OD
cho hình thang ABCD(AB//CD) có CD=AD+BC.gọi K là giao điểm của tia phân giác góc A với đáy CD. chứng minh AD=DK. Tam giác BCK cân ở C. BK là tia phân giác của góc B
Bạn xem lời giải ở đường link sau nhé:
Câu hỏi của Amber Shindouya - Toán lớp 8 - Học toán với OnlineMath
Vif CD = AD + BC maf KD = AD => KC = BC
Tam giacs DAK cân tại D => góc A1 = góc K1
Mà K1 = A2 (so le trong) => Góc A1 = góc A2 => AK là tia phân giác góc A.
Chứng minh tương tự, BK là phân giác góc B
cho tứ giác ABCD, E là giao điểm của AB và CD. F là giao điểm của BC và AD. Các tia phân giác của góc E và góc F cắt nhau tại I. Chứng minh rằng : nếu góc BAD=130^o, góc BCD=50^o thì IE song song với IF
TRÊN CÁC CẠNH OX VÀ OY CỦA GÓC XOY, LẤY CÁC ĐIỂM A VÀ B SAO CHO OA=OB . TIA PHÂN GIÁC CỦA GÓC XOY CẮT AB Ở C .
A) CHỨNG MINH HAI TAM GIÁC AOC VÀ BOC BẰNG NHAU
B) CHỨNG MINH : AB VUÔNG GÓC OC
C) LẤY ĐIỂM D TRÊN TIA OC SAO CHO C LÀ TRUNG ĐIỂM CỦA OD . CHỨNG MINH AD // OB
Cho góc xoy khác góc bẹt. Lấy các điểm A,B thuộc tia Ox sao cho OA< OB. Lấy các điểm C, D thuộc tia Oy sao cho OC = OA, OD = OB. Gọi E là giao điểm của AD và BC chứng minh rằng. A) AD= BC B) ∆EAB= ∆ECD C)OE là tia phân giác của góc xOy. Giải giúp e câu C với ạ.
a: Xét ΔOAD và ΔOBC có
OA=OB
\(\widehat{O}\) chung
OD=OC
Do đó: ΔOAD=ΔOBC
Suy ra: AD=BC
b: Ta có: ΔOAD=ΔOBC
nên \(\widehat{OAD}=\widehat{OBC}\)
\(\Leftrightarrow180^0-\widehat{OAD}=180^0-\widehat{OBC}\)
hay \(\widehat{EAB}=\widehat{ECD}\)
Xét ΔEAB và ΔECD có
\(\widehat{EAB}=\widehat{ECD}\)
AB=CD
\(\widehat{EBA}=\widehat{EDC}\)
Do đó: ΔEAB=ΔECD
c: Ta có: ΔEAB=ΔECD
nên EB=ED
Xét ΔOEB và ΔOED có
OE chung
EB=ED
OB=OD
Do đó: ΔOEB=ΔOED
Suy ra: \(\widehat{BOE}=\widehat{DOE}\)
hay OE là tia phân giác của góc xOy
a/ Xét t/g OAD và t/g OBC cos
AO = OB
\(\widehat{xOy}\) : chung
OD = OC
=> t/g OAD = t/g OBC
=> AD = BC
b/ Không rõ đề.
c/ Có
OC = ODOA = OB
=> AC = BD
Có \(\widehat{OAD}=\widehat{OBE}\) (do t/g OAD = t/g OBC)
=> \(180^o-\widehat{OAD}=180^o-\widehat{OBE}\)
=> \(\widehat{CAD}=\widehat{CBD}\)
Xét t/g AEC và t/g BED có
\(\widehat{CAD}=\widehat{CBD}\)
AC = BD\(\widehat{OCB}=\widehat{ODA}\)
=> t/g AEC = t/g BED (g.c.g)
=> AE = BE
Xét t/g OAE và t/g OBE có
OA = OB
AE = BEOE : chung
=> t/g OAE = t/g OBE
=> ^xOE = ^yOe
=> OE là pg góc xOy
Cho góc xOy khác góc bẹt. Lấy các điểm A, B thuộc tia Ox sao cho OA < OB. Lấy các điểm C, D thuộc tia Oy sao cho OC = OA, OD = OB. Gọi E là giao điểm của AD và BC. Chứng minh rằng
a) AD = BC
b) ΔEAB = ΔECD
c) OE là tia phân giác của góc xOy
a)
ΔOAD và ΔOCB có:
OA = OC (gt)
Góc O chung
OD = OB (gt)
⇒ ΔOAD = ΔOCB (c.g.c)
⇒ AD = BC (hai cạnh tương ứng).
c) Ta có:
ΔEAB=ΔECD
nên EB=ED
Xét ΔOEB và ΔOED có
OE chung
EB=ED
OB=OD
Do đó: ΔOEB=ΔOED
Suy ra: BOE=DOE
hay OE là tia phân giác của góc xOy
Cho góc xOy khác góc bẹt. Lấy các điểm A, B thuộc tia Ox sao cho OA < OB. Lấy các điểm C, D thuộc tia Oy sao cho OC = OA, OD = OB. Gọi E là giao điểm của AD và BC. Chứng minh rằng
OE là tia phân giác của góc xOy
ΔAEB = ΔCED ⇒ EA = EC (hai cạnh tương ứng)
ΔOAE và ΔOCE có
OA = OC
EA = EC
OE cạnh chung
⇒ ΔOAE = ΔOCE (c.c.c)
⇒ (hai góc tương ứng)
Vậy OE là tia phân giác của góc xOy.
Cho góc nhọn xOy. Trên tia Ox lấy các điểm A và C; trên tia Oy lấy các điểm B và D sao cho OA = OB và OC = OD. Gọi I là giao điểm của BC và AD. Chứng minh rằng: a) AD = BC ; b) CI = ID ; c) OI là phân giác của góc xOy.
XET tg obc va oad ta co
oc=od
o la goc chung
ob = oa
do đó tg obc = tg oad (c.g.c)