1) tìm x để 3 số: x - 1; 2x; 2x - 4 lập thàn 1 cấp số cộng
2) cho dãy số -5; -1; 3; 7;... là 1 cấp số cộng. Viết 3 số tiếp theo của dãy số
1) tìm x để 3 số x + 2; x + 4; 4x + 8 lập thành 1 cấp số nhân
2) tìm x để 3 số 1; 5; 2x + 4 lập thành 1 cấp số nhân
1: Để ba số này lập thành 1 cấp số nhân thì
\(\left[{}\begin{matrix}\left(x+4\right)^2=\left(4x+8\right)\left(x+2\right)\\\left(x+2\right)^2=\left(x+4\right)\left(4x+8\right)\\\left(4x+8\right)^2=\left(x+2\right)\left(x+4\right)\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}\left(2x+4\right)^2-\left(x+4\right)^2=0\\4x^2+8x+16x+32-x^2-4x-4=0\\16x^2+64x+64-x^2-6x-8=0\end{matrix}\right.\)
=>\(\left[{}\begin{matrix}\left(2x+4-x-4\right)\left(2x+4+x+4\right)=0\\3x^2+20x+28=0\\15x^2+58x+56=0\end{matrix}\right.\)
=>\(\left[{}\begin{matrix}x\left(3x+8\right)=0\\x\in\left\{-2;-\dfrac{14}{3}\right\}\\x\in\left\{-\dfrac{28}{15};-2\right\}\end{matrix}\right.\)
=>\(x\in\left\{0;-\dfrac{8}{3};-\dfrac{14}{3};-\dfrac{28}{15}\right\}\)
2:
Để đây là 1 cấp số nhân thì
\(\left[{}\begin{matrix}1^2=5\left(2x+4\right)\\5^2=1\cdot\left(2x+4\right)\\\left(2x+4\right)^2=1\cdot5\end{matrix}\right.\)
=>\(\left[{}\begin{matrix}10x+20=1\\2x+4=25\\\left(2x+4\right)^2=5\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{19}{10}\\x=\dfrac{21}{2}\\2x+4=\pm\sqrt{5}\end{matrix}\right.\)
=>\(x\in\left\{-\dfrac{19}{10};\dfrac{21}{2};\dfrac{\sqrt{5}-4}{2};\dfrac{-\sqrt{5}-4}{2}\right\}\)
1) tìm x để 3 số x + 2; x + 4; 4x + 8 lập thành 1 cấp số nhân
2) tìm x để 3 số 1; 5; 2x + 4 lập thành 1 cấp số nhân
1, Ta có \(\left(x+4\right)^2=\left(x+2\right)\left(4x+8\right)\Leftrightarrow x^2+8x+16=4x^2+12x+16\)
\(\Leftrightarrow3x^2+4x=0\Leftrightarrow x\left(3x+4\right)=0\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-\dfrac{4}{3}\end{matrix}\right.\)
2, tương tự
1. tìm x để 3 số 3; 2x + 1; 7 lập thành một cấp số cộng
2. tìm x để 3 số 1; 2x + 1; 9 lập thành một cấp số cộng
1: Để ba số đó lập thành1 cấp số cộng thì
\(\left[{}\begin{matrix}3=2\left(2x+1+7\right)\\2x+1=2\left(3+7\right)=20\\7=2\left(2x+1+3\right)\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}4x+16=3\\x=\dfrac{19}{2}\\2\left(2x+4\right)=7\end{matrix}\right.\)
=>\(\left[{}\begin{matrix}x=-\dfrac{13}{4}\\x=\dfrac{19}{2}\\x=-\dfrac{1}{4}\end{matrix}\right.\)
2: Để ba số này lập thành cấp số cộng thì
\(\left[{}\begin{matrix}1=2\left(2x+1+9\right)\\2x+1=2\left(1+9\right)=20\\9=2\left(1+2x+1\right)\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}4x+20=1\\x=\dfrac{19}{2}\\4x+4=9\end{matrix}\right.\)
=>\(\left[{}\begin{matrix}x=\dfrac{19}{2}\\x=-\dfrac{19}{4}\\x=\dfrac{5}{4}\end{matrix}\right.\)
P= (x+3/x^2-1 - 3/x+1) : (1-2/x-1)
a) Rút gọn P
b) Tìm x để P < 0
c) Tìm x là số nguyên để Q= x.P nhân giá trị nguyên
a: \(P=\dfrac{x+3-3x+3}{\left(x+1\right)\left(x-1\right)}:\dfrac{x-1-2}{x-1}\)
\(=\dfrac{-2\left(x-3\right)}{\left(x+1\right)\left(x-1\right)}\cdot\dfrac{x-1}{x-3}=\dfrac{-2}{x+1}\)
b: Để P<0 thì x+1>0
hay x>-1
c: Để Q=(-2x)/(x+1) là số nguyên thì \(-2x-2+2⋮x+1\)
\(\Leftrightarrow x+1\in\left\{1;-1;2;-2\right\}\)
hay \(x\in\left\{0;-2;-3\right\}\)
Cho các biểu thức:\(A=\dfrac{2x}{x+3}+\dfrac{x+1}{x-3}+\dfrac{3-11x}{9-x^2};B=\dfrac{x-3}{x+1}\) \(\left(0\le x,x\ne9\right)\) a, Rút gọn A
b, Với P = A.B ,tìm x để P = \(\dfrac{9}{2}\)
c, Tìm x để B < 1
d, Tìm số nguyên x để P là số nguyên
a) Ta có: \(A=\dfrac{2x}{x+3}+\dfrac{x+1}{x-3}+\dfrac{3-11x}{9-x^2}\)
\(=\dfrac{2x\left(x-3\right)}{\left(x+3\right)\left(x-3\right)}+\dfrac{\left(x+1\right)\left(x+3\right)}{\left(x-3\right)\left(x+3\right)}+\dfrac{11x-3}{\left(x-3\right)\left(x+3\right)}\)
\(=\dfrac{2x^2-6x+x^2+4x+3+11x-3}{\left(x-3\right)\left(x+3\right)}\)
\(=\dfrac{3x^2+9x}{\left(x-3\right)\left(x+3\right)}\)
\(=\dfrac{3x\left(x+3\right)}{\left(x-3\right)\left(x+3\right)}=\dfrac{3x}{x-3}\)
b)
ĐKXĐ: \(x\notin\left\{3;-3;-1\right\}\)
Ta có: P=AB
\(=\dfrac{3x}{x-3}\cdot\dfrac{x-3}{x+1}\)
\(=\dfrac{3x}{x+1}\)
Để \(P=\dfrac{9}{2}\) thì \(\dfrac{3x}{x+1}=\dfrac{9}{2}\)
\(\Leftrightarrow9\left(x+1\right)=6x\)
\(\Leftrightarrow9x-6x=-9\)
\(\Leftrightarrow3x=-9\)
hay x=-3(loại)
Vậy: Không có giá trị nào của x để \(P=\dfrac{9}{2}\)
Câu 1: Tìm giá trị thực của tham số m để hàm số
y= \(\dfrac{1}{3}x^3-mx^{2^{ }}+\left(m^2-4\right)x+3\) tại x=3
Câu 2:Tìm m để hàm số \(y=x^3-2mx^2+mx+1\) đạt cực tiểu tại x=1
cho dãy số:
a) 1, 2, 3, 4, 5, …, x. tìm x biết dãy có 1989 chữ số.
b) 1, 2, 3, 4, 5, ... , x. tìm x để số chữ số của dãy gấp 2 lần số số hạng.
c) 1, 2, 3, 4, 5, ... , x. tìm x để số chữ số của dãy gấp 3 lần số số hạng.
a )
dãy số: 1;2;3;4;5;6;7;8;9 có 9 số mỗi số có 1 chữ số nên có tất cả 9 chữ số
dãy số: 10;11;12;13...99 có 90 số mỗi số có 2 chữ số nên tổng cộng có 90*2 = 180 chữ số
dãy số 100;101;102;...999 mỗi số có 3 chữ số
Từ phân tích trên ta có:
1989 - (180 + 9) = 1800 (chữ số cần tìm)
Số cần tìm là một số có 3 chữ số, vậy số cần tìm là:
1800 :3 + (90 + 9) = 699
Vậy x là số 699.
b) Để chữ số của dãy số bằng 2 x n thì các chữ số gấp đôi các số
. Để số các chữ số gấp đôi số thì ta phải lấy ở số có 3 chữ số mỗi số 1 chữ số bù cho các số có 1 chữ số.
Từ 1 đến 9 cần phải bù số chữ số là :
(9 - 1) + 1 = 9 (chữ số)
9 chữ số này sẽ lấy 9 số có 3 chữ số.
Vậy số n là : 99 + 9 = 108
c)Với ta bù cho 9 số có 1 chữ số mỗi số 2 chữ số nữa và bù cho 90 số có 2 chữ số mỗi số thêm 1 chữ số nữa. Các chữ số lấy để bù là những số có 4 chữ số và mỗi số thừa ra 1 chữ số.
Số các số có 4 chữ số là : 9 x 2 + 90 x 1 = 108.
Vậy số n cần tìm là : 999 + 108 = 1107
1, tìm số nguyên x để
A=
x-4
x+1
là số nguyên
2, tìm số nguyên x để
B=
2x-3
x-3
là số nguyên
3, tìm số nguyên x để
C=
x2 - 2x + 3
x - 1
là số nguyên
bạn có thể giải chi tiết giúp mình đc ko
cho c = 2x - 1/x + 2 và d = x mũ 2 -2x + 1/x + 1
a) tính c khi x = 0; x = 1/2; x = 3
b) tìm só nguyên x để c là số nguyên
c) tìm số nguyên x để d là số nguyên
d) tìm x để c và d laf số nguyên
cho số hữu tỉ x=2/2a+1. a) Tìm a để x là 1 số nguyên. b) Tìm số nguyên x để tích của hai phân số 6/x+1 và x-1/3 là một số nguyên
\(a)\)
Để x là số nguyên
\(\Rightarrow\frac{2}{2a+1}\)là số nguyên
\(\Rightarrow2⋮2a+1\Rightarrow2a+1\inƯ\left(2\right)\Rightarrow2a+1\in\left\{\pm1;\pm2\right\}\)
Ta có:
2a+1 | -2 | -1 | 1 | 2 |
a | -3/2 | -1 | 0 | 1/2 |
So sánh điều điện a | Loại | TM | TM | Loại |
\(b)\)
Ta có:
\(\frac{6\left(x-1\right)}{3\left(x+1\right)}\) thuộc số nguyên
\(=\frac{6x-1}{3x+1}=\frac{6x+2-3}{3x+1}=\frac{6x+2}{3x+1}-\frac{3}{3x+1}=2-\frac{3}{3x+1}\)
\(\Leftrightarrow3⋮3x+1\Rightarrow3x+1\inƯ\left(3\right)=\left\{\pm1;\pm3\right\}\)
\(3x+1=1\Leftrightarrow3x=0\Leftrightarrow x=0\left(TM\right)\)
\(3x+1=-1\Leftrightarrow3x=-2\Leftrightarrow x=\frac{-2}{3}\)(Loại)
\(3x+1=3\Leftrightarrow3x=2\Leftrightarrow x=\frac{2}{3}\)(Loại)
\(3x+1=-3\Leftrightarrow3x=-4\Leftrightarrow x=\frac{-4}{3}\)(Loại)