tìm x,y là số tự nhiên xy + x + y = 170
Bài 4: Tìm số tự nhiên x; y sao cho:
a) (x + 2).(y + 1)=21 b) xy + x + y=10
c) 2 x+ xy - y=7 d) x + 2xy + y=10
Bài 5 : Tìm số tự nhiên x; y sao cho :
a) (x + y) .(x - y)=7 ( x>y)
b) x2 + y + x + xy = 11
Bài 6 : Tìm số tự nhiên a;b sao cho
a) 5ab + b = 510
b) 2a + 2b = 2a+b
Bài 4:
\(a,\Rightarrow\left(x+2\right)\left(y+1\right)=3\cdot7=7\cdot3=21\cdot1=1\cdot21\)
x+2 | 1 | 21 | 3 | 7 |
y+1 | 21 | 1 | 7 | 3 |
x | -1(loại) | 19 | 1 | 5 |
y | 20 | 0 | 6 | 2 |
Vậy \(\left(x;y\right)\in\left\{\left(19;0\right);\left(1;6\right);\left(5;2\right)\right\}\)
a) Tìm x, y là số tự nhiên biết: xy + x + 2y = 5
b) Tìm x, y là số nguyên để xy + 2x + 2y = -16
a) \(xy+x+2y=5\Leftrightarrow xy+x+2y+2=7\Leftrightarrow\left(y+1\right)\left(x+2\right)=7\)
Vì x,y là số tự nhiên nên \(x,y\in N\)\(x,y\ge0\)\(\Rightarrow y+1\ge1;x+2\ge2\)
Từ đó ta có :
\(\hept{\begin{cases}x+2=7\\y+1=1\end{cases}\Leftrightarrow\hept{\begin{cases}x=5\\y=0\end{cases}}}\)
b) \(xy+2x+2y=-16\Leftrightarrow xy+2y+2x+4=-12\Leftrightarrow\left(y+2\right)\left(x+2\right)=-12\)
Lần lượt xét từng trường hợp , ta được :
(x;y) = (-14; -1) ; (-8 ; 0) ; (-6 ; 1) ; (-5 ;2) ; (-4 ;4)
a) \(\left(x+2\right)\left(y+1\right)=7=1.7=7.1\)
Hoặc \(\hept{\begin{cases}x+2=7\\y+1=1\end{cases}\Leftrightarrow\hept{\begin{cases}x=5\\y=0\end{cases}}}\in N\)
Hoặc\(\hept{\begin{cases}x+2=1\\y+1=7\end{cases}}\Leftrightarrow\hept{\begin{cases}x=-1\notin N\\y=6\end{cases}}\)
Vậy \(\left(x;y\right)=\left(5;0\right)\)
b)\(\left(x+2\right)\left(y+2\right)=-1.12=-12.1=-2.6=-6.2=-3.4=-4.3\)
tương tự giải 6 TH là được
a) Ta có xy+x+2y=x(y+1)+2(y+1-1)=x(y+1)+2(y+1)-2=(y+1)(x+2)-2=5 ===> (y+1)(x+2)=7
Lại có: 7=1 . 7=(y+1)(x+2)
Ta có bảng giá trị:
y+1 | 1 | 7 |
x+2 | 7 | 1 |
y | 0 | 6 |
x | 5 | -1 |
câu b bạn làm tuơng tự nha
Tìm x, y là số tự nhiên biết xy.(x+y)=456789
Tìm x ,y là số tự nhiên ,biết
1) xy=2. 2) xy=5. 3)xy =6. 4)xy=8. 5)xy=12
6) xy=42 (x<y)
a, x=1; y=2 => 12
x=2; y=1 => 21
b, x=1; y=5 => 15
x=5; y=1 => 51
c, x=1; y=6 => 16
x=6;y=1 => 61
x=2; y=3=> 23
x=3; y=2 => 32
d, x=1; y=8 => 18
x=2; y=4 => 24
x=4; y=2 => 42
x=8; y=1 => 81
5,
x=3; y=4 => 34
x=4; y=3 => 43
x=2; y=6 => 26
x=6; y=2 => 62
tìm x,y là số tự nhiên thoả mãn x+y/xy=3/2
tìm x,y là số tự nhiên sao cho xy+x+y=30
Tìm nghiệm x,y là số tự nhiên của phương trình 2(x+y)+xy=x^2+y^2
2(x + y) + xy = x2 + y2
<=> x2 + y2 - 2x - 2y - xy = 0
<=> 4x2 + 4y2 - 4xy - 8x - 8y = 0
<=> (4x2 - 4xy + y2) - 4(2x - y) + 4 + 3y2 - 12y + 12 - 16 = 0
<=> (2x - y)2 - 4(2x - y) + 4 + 3(y2 - 4y + 4) = 16
<=> (2x - y - 2)2 = 16 - 3(y - 2)2 (1)
Do VT = (2x - y - 2)2 \(\ge\)0 \(\forall\)x;y
=> VP = 16 - 3(y - 2)2 \(\ge\)0
=> 3(y - 2)2 \(\le\) 16
=> (y - 2)2 \(\le\)16/3
Do y nguyên dương và (y - 2)2 là số chính phương => (y - 2)2 \(\in\){0; 1; 4}
=> y - 2 \(\in\){0; 1; -1; 2; -2}
Lập bảng:
y - 2 | 0 | 1 | -1 | 2 | -2 |
y | 2 | 3 | 1 | 4 | 0 |
Với y = 2 , khi đó pt (1) trở thành: (2x - 2 - 2)2 = 16 - 3.0
<=> (2x - 4)2 = 16
<=> \(\orbr{\begin{cases}2x-4=4\\2x-4=-4\end{cases}}\)
<=> \(\orbr{\begin{cases}x=4\\x=0\end{cases}}\)
Với y = 3 .... (tự thay vào tìm x)
cho x y là 2 số tự nhiên thỏa mãn x+y=2019 tìm max xy
\(x+y=2019\Rightarrow\left(x+y\right)^2=x^2+2xy+y^2=2019^2=4076361\)
vì \(x^2+y^2>=2xy\Rightarrow x^2+2xy+y^2=\left(x^2+y^2\right)+2xy>=2xy+2xy=4xy\)
\(\Rightarrow4076361>=4xy\Rightarrow1019090,25>=xy\)
dấu = xảy ra khi \(x=y=\frac{2019}{2}=1009,5\)
vậy max của xy là 1019090,25 khi x=y=1009,5