Tam giác ABC có 5A = 3B = 15C.
a) Tính số đo của các góc của tam giác ABC.
b) Vẽ tia phân giác A cắt BC tại D. Tính ADB.
Cho tam giác ABC có 5A = 3B = 15C
a) Tính góc A, B, C.
b) Tia phân giác của góc A cắt BC ở D. Tính số đo của góc ADB.
a, Ta có : \(5A=3B=15C\Rightarrow\frac{5A}{15}=\frac{3B}{15}=\frac{15C}{15}\Rightarrow\frac{A}{3}=\frac{B}{5}=C\)
và \(A+B+C=180^0\)
Theo tính chất dãy tỉ số bằng nhau
\(\frac{A}{4}=\frac{B}{5}=C=\frac{A+B+C}{4+5+1}=\frac{180}{10}=18\Rightarrow A=72^0;B=90^0;C=18^0\)
b, Do AD là tia phân giác ^A => \(\widehat{BAD}=\frac{1}{2}\widehat{A}=\frac{72}{2}=36^0\)
Lại có : \(\widehat{BAD}+\widehat{ADB}+\widehat{ABD}=180^0\)( tổng số đo 3 góc trong tam giác )
\(\Rightarrow\widehat{ADB}=180^0-\widehat{BAD}-\widehat{ABD}=180^0-90^0-36^0=54^0\)
Cho tam giác ABC vuông tại A có góc B = 60 độ
a)Tính số đo góc C và so sánh độ dài 3 cạnh của tam giác ABC.
b)Vẽ BD là tia phân giác của góc ABC (D thuộc AC). Qua D vẽ DK vuông góc với BC (K thuộc BC). Chứng minh tam giác BAD=tam giác BKD.
c)Chứng minh tam giác BDC cân và K là trung điểm BC.
d)Tia KD cắt BA tại I. Tính độ dài cạnh ID biết AB=3cm (làm tròn kết quả đến chữ số thập phân thứ nhất).
a) Ta có: ΔABC vuông tại A(gt)
nên \(\widehat{ABC}+\widehat{ACB}=90^0\)(hai góc nhọn phụ nhau)
\(\Leftrightarrow\widehat{ACB}+60^0=90^0\)
hay \(\widehat{ACB}=30^0\)(1)
Xét ΔABC có \(\widehat{ACB}< \widehat{ABC}< \widehat{BAC}\left(30^0< 60^0< 90^0\right)\)
nên AB<AC<BC
b) Xét ΔABD vuông tại A và ΔKBD vuông tại K có
BD chung
\(\widehat{ABD}=\widehat{KBD}\)(BD là tia phân giác của \(\widehat{ABK}\))
Do đó: ΔABD=ΔKBD(cạnh huyền-góc nhọn)
c) Ta có: BD là tia phân giác của \(\widehat{ABC}\)(gt)
nên \(\widehat{ABD}=\widehat{DBC}=\dfrac{\widehat{ABC}}{2}=\dfrac{60^0}{2}=30^0\)(2)
Từ (1) và (2) suy ra \(\widehat{DBC}=\widehat{DCB}\)
Xét ΔDBC có \(\widehat{DBC}=\widehat{DCB}\)(cmt)
nên ΔDBC cân tại D(Định lí đảo của tam giác cân)
Xét ΔBDK vuông tại K và ΔCDK vuông tại K có
DB=DC(ΔDBC cân tại D)
DK chung
Do đó: ΔBDK=ΔCDK(Cạnh huyền-cạnh góc vuông)
Suy ra: BK=CK(hai cạnh tương ứng)
hay K là trung điểm của BC(Đpcm)
Cho tam giác ABC có góc B- góc C= 20 độ. Tia phân giác của góc A cắt BC tại D. Tính số đo của góc ADC, ADB
Cho tam giác ABC có góc B- góc C= 20 độ. Tia phân giác của góc A cắt BC tại D. Tính số đo của góc ADC, ADB
Trong ΔABD ta có ∠D1 là góc ngoài tại đỉnh D
∠D1 = ̂B + ∠A1 (tính chất góc ngoài của tam giác)
Trong ΔADC ta có ∠D2 là góc ngoài tại đỉnh D
∠D2 = ̂C + ∠A2 (tính chất góc ngoài của tam giác)
Ta có: ∠B > ∠C (gt); ∠A1 = ∠A2 (gt)
⇒∠D1 - ∠D2 = (B + ∠A1) - (C + ∠A2) = ∠B - ∠C = 20o
Lại có: ∠D1 + ∠D2 = 180o (hai góc kề bù)
⇒∠D1 = (180o + 20o):2 = 100o
⇒∠D1 = (100o - 20o) = 80o
1. Cho tam giác ABC có \(\widehat{ABC}-\widehat{ACB}=60^o\). Tia phân giác của góc A cắt BC tại D
a) Tính số đo của các góc ADC và ADB
b) Vẽ AH vuoong góc với BC tại H. Tính sô đo của góc HAD
Help me !!!1
Cho tam giác ABC có góc C= 40 độ. Tia phân giác của góc BAC cắt cạnh BC tại điểm D biết góc ADB=84 độ
a) tính các góc của tam giác ADC
b) tính các góc của tam giác ABC
khỏi vẽ hình
a,Do AD nằm trong góc CDB nên ta có:
ADC + ADB = 180do (ke bu)
ADC + 84 = 180
ADC = 96
B, trong tam giác ADC ta có ;
ADC + ACD+CAD = 180 (định lí tổng ba góc trong tam giác)
96 + 40 + CAD =180
CAD =44
vì AD là phân giác của góc CAB nền CAD= BAD=44,ta co : CAD + DAB = CAB
2CAD = CAB
2 . 44 = CAB
88 = CAB
vì ADC là góc ngoài tại đỉnh A của tam giác ADB nen ta co
ADC = DAB + ABD
96 = 44 + ABD
ABD = 52
Cho tam giác ABC, A= 60 độ, = 80 độ. Tia phân giác của BAC cắt BC tại D.
a) Tính sốđo góc C.
b) Tính số đo của ADB
a, Ta có:A+B+C=180 độ
C=180 độ - A -B
=180độ -60 độ -80 độ
=40 độ
b, ADB =180 độ - 1/2 A- B
=70độ
Vẽ hình giúp mik vs.GẤPPPPPPPPPPPPPPPPPPPPPPPPPPPPP
1) Cho tam giác ABC vuông tại A có góc ACB=48 độ. Tia phân giác của góc ACB cắt cạnh AB tại D. Trên cạnh BC lấy điểm E sao cho CE = CA.
a) Tính số đo góc ABC.
b) Chứng minh rằng: ΔCDA = ΔCDE.
c) Chứng minh rằng: DE vuông góc BC
d) Vẽ đường thẳng d vuông góc với AC tại C. Qua A vẽ đường thẳng d’ song song
Cho tam giác ABC có B - C = 180 . Tia phân giác góc A cắt BC tại D . Tính số đo góc ADC ? góc ADB ?
Xét tam giác ABC: \(\widehat{A}+\widehat{B}+\widehat{C}=180^0\Rightarrow\widehat{B}+\widehat{C}=180^0-\widehat{A}\)
Mặt khác: \(\widehat{B}-\widehat{C}=18^0\Rightarrow\left\{{}\begin{matrix}\widehat{B}=\dfrac{180^0-\widehat{A}+18^0}{2}=99^0-\dfrac{\widehat{A}}{2}\\\widehat{C}=99^0+\dfrac{\widehat{A}}{2}-18^0=81^0-\dfrac{\widehat{A}}{2}\end{matrix}\right.\)
Xét tam giác ABD: \(\widehat{ADC}=\widehat{BAD}+\widehat{B}=\dfrac{\widehat{A}}{2}+99^0-\dfrac{\widehat{A}}{2}=99^0\)
\(\widehat{ABD}=180^0-\widehat{ADC}=81^0\)