\(\frac{x^3}{8}\)+ \(\frac{x^2y}{4}+\frac{xy^2}{6}+\frac{y^3}{27}\) tại x= - 8, y=6
Tính?
8,Thực hiện phép tính
a,\(\frac{5x^2-y^2}{xy}-\frac{3x-2y}{y}\)
b,\(\frac{3}{2x+6}-\frac{x-6}{2x^2+6x}\)
c,\(\frac{2x}{x^2+2xy}+\frac{y}{xy-2y^2}+\frac{4}{x^2-4y^2}\)
d,\(\frac{1}{x-y}+\frac{3xy}{y^3-x^3}+\frac{x-y}{x^2+xy+y^2}\)
e,\(\frac{2x+y}{2x^2-xy}+\frac{16x}{y^2-4x^2}+\frac{2x-y}{2x^2+xy}\)
f,\(\frac{1}{1-x}+\frac{1}{1+x}+\frac{2}{1+x^2}+\frac{4}{1+x^4}+\frac{8}{1+x^8}+\frac{16}{1+x^{16}}\)
tính gtbt
\(\frac{x^3}{8}+\frac{x^2y}{4}+\frac{xy^2}{6}+\frac{y^3}{27}\)vs x= -8 ;y= 6
thanks các bn trc nha
đặt A= \(\frac{x^3}{8}+\frac{x^2y}{4}+\frac{xy^2}{6}+\frac{y^3}{27}=\left(\frac{x}{2}\right)^3+3.\left(\frac{x}{2}\right)^2.\left(\frac{y}{3}\right)+3\left(\frac{x}{2}\right)\left(\frac{y}{3}\right)^2+\left(\frac{y}{3}\right)^3\)
= \(\left(\frac{x}{2}+\frac{y}{3}\right)^3\)
thay x=-8 vfa y=6 ta đucọ
A= \(\left(-\frac{8}{2}+\frac{6}{3}\right)^3=\left(-4+2\right)^3=\left(-2\right)^3=-8\)
Viet thanh tich:
a) \(\frac{1}{8}x^3-\frac{3}{2}x^2+\frac{3}{2}x-1\)
b) \(\frac{1}{8}x^3-\frac{1}{4}x^2y+\frac{1}{12}xy^2-\frac{1}{27}y^3\)
a, (x3.x2.x).(1/8-3/2+3/2-1) b, (x3.x2y.xy2.y3).(1/8-1/4+1/12-1/27)
=x6.(-7/8) = x6.y6.9.(-17/216)
\(\frac{x}{3}=\frac{y}{4}và\frac{y}{6}=\frac{z}{5}va3x-2y+5z=86\)
\(\frac{x}{5}=\frac{y}{7};xy=140\)
\(\frac{x-1}{9}+\frac{x-2}{8}=\frac{x-3}{7}+\frac{x-4}{6}\)
\(\frac{31-2x}{x+23}=\frac{9}{4}\)
\(4x=5y;xy-80=0\)
\(\frac{x+3}{8}-\frac{2}{x-3}\)
\(\frac{x^2}{6}=\frac{14}{25}\)
Ta có : \(\frac{x}{3}=\frac{y}{4}\Rightarrow\frac{x}{9}=\frac{y}{12}\left(1\right)\)
\(\frac{y}{6}=\frac{z}{5}\Rightarrow\frac{y}{12}=\frac{z}{10}\left(2\right)\)
Từ (1) và (2) => \(\frac{x}{9}=\frac{y}{12}=\frac{z}{10}\)
Ta có : \(\frac{x}{9}=\frac{y}{12}=\frac{z}{10}=\frac{3x}{27}=\frac{2y}{24}=\frac{5z}{50}=\frac{3x-2y+5z}{27-24+50}=\frac{86}{53}\) (đề sai)
b) Đặt : k = \(\frac{x}{5}=\frac{y}{7}\)
=> k2 \(=\frac{x}{5}.\frac{y}{7}=\frac{xy}{35}=\frac{140}{35}=4\)
=> k = -2;2
+ k = 2 thì \(\frac{x}{5}=2\Rightarrow x=10\)
\(\frac{z}{7}=2\Rightarrow z=14\)
+ k = -2 thì \(\frac{x}{5}=2\Rightarrow x=-10\)
\(\frac{z}{7}=2\Rightarrow z=-14\)
Vậy................................
1 cho a+b=1 tính giá trị của biểu thức
H=a3+b3+3ab(a2+b2)+6a2b2(a+b)
2 \(\frac{x^3}{8}+\frac{x^2y}{4}+\frac{xy^2}{6}+\frac{y^3}{27}\) với x=8,y= -6
\(1,H=a^3+b^3+3ab\left(a^2+b^2\right)+6a^2b^2\left(a+b\right)\)
\(=\left(a+b\right)\left(a^2-ab+b^2\right)+3ab[\left(a+b\right)^2-2ab]+6a^2b^2\left(a+b\right)\)
\(=\left(a+b\right)[\left(a+b\right)^2-3ab]+3ab[\left(a+b\right)^2-2ab]+6a^2b^2\left(a+b\right)\)
\(=1-ab+3ab\left(1-2ab+6a^2b^2\right)\)
\(=1-3ab+3ab-6a^2b^2+6a^2b^2\)
\(=1\)
Cho \(2x-3y=4\)
Tính giá trị của biểu thức A = \(-\frac{8}{3}x^3+\frac{36}{5}x^2y-\frac{54}{5}xy^2+\frac{27}{5}y^3\)
Đề bài lạ thế!
\(A=-\frac{8}{5}x^3+\frac{36}{5}x^2y-\frac{54}{5}xy^2+\frac{27}{5}y^3\)
\(=-\frac{1}{5}\left(8x^3-36x^2y+54xy^2-27y^3\right)\)
=\(-\frac{1}{5}\left(\left(2x\right)^3-3.\left(2x\right)^2.3y+3.2x.\left(3y\right)^2-\left(3y\right)^3\right)\)
\(=-\frac{1}{5}\left(2x-3y\right)^3=-\frac{1}{5}.4^3=-\frac{64}{5}\)
Tìm x, y, z biết:
a, \(\frac{x}{3}=\frac{y}{4}=\frac{z}{5}v\)à x+y=-24
b, \(\frac{x}{7}=\frac{y}{6}=\frac{z}{5}\)và 3z-2y=20
c, \(\frac{x}{2}=\frac{y}{3}=\frac{z}{4}\)và x+2y-3z=-20
d, \(\frac{x}{2}=\frac{y}{3};\frac{y}{8}=\frac{z}{10}\)và x+y-z=20
e, 3x=2y;\(\frac{y}{6}=\frac{z}{7}\)và x+y-z=30
f, \(\frac{x}{2}=\frac{y}{3}\)và xy= 5400
Mấy bài còn lại tương tự nhé cậu
giải hệ phương trình
1 , \(\left\{{}\begin{matrix}\left(x+y\right)\left(x-1\right)=\left(x-y\right)\left(x+1\right)+2xy\\\left(y-x\right)\left(y-1\right)=\left(y+x\right)\left(y-2\right)-2xy\end{matrix}\right.\)
2, \(\left\{{}\begin{matrix}2\left(\frac{1}{x}+\frac{1}{2y}\right)+3\left(\frac{1}{x}-\frac{1}{2y}\right)^2=9\\\left(\frac{1}{x}+\frac{1}{2y}\right)-6\left(\frac{1}{x}-\frac{1}{2y}\right)^2=-3\end{matrix}\right.\)
3 , \(\left\{{}\begin{matrix}\frac{xy}{x+y}=\frac{2}{3}\\\frac{yz}{y+z}=\frac{6}{5}\\\frac{zx}{z+x}=\frac{3}{4}\end{matrix}\right.\)
4 , \(\left\{{}\begin{matrix}2xy-3\frac{x}{y}=15\\xy+\frac{x}{y}=15\end{matrix}\right.\)
5 , \(\left\{{}\begin{matrix}x+y+3xy=5\\x^2+y^2=1\end{matrix}\right.\)
6 , \(\left\{{}\begin{matrix}x+y+xy=11\\x^2+y^2+3\left(x+y\right)=28\end{matrix}\right.\)
7, \(\left\{{}\begin{matrix}x+y+\frac{1}{x}+\frac{1}{y}=4\\x^2+y^2+\frac{1}{x^2}+\frac{1}{y^2}=4\end{matrix}\right.\)
8, \(\left\{{}\begin{matrix}x+y+xy=11\\xy\left(x+y\right)=30\end{matrix}\right.\)
9 , \(\left\{{}\begin{matrix}x^5+y^5=1\\x^9+y^9=x^4+y^4\end{matrix}\right.\)
Tìm x,y biết :
a)\(\frac{x}{y}=\frac{2}{3}\)và \(2y^2-xy=48\)
b)\(\frac{x^2}{4}=\frac{y^2}{9}=\frac{z^2}{1}\)và \(3x^2-2y^2+4z^2=-2\)
c)\(\frac{x}{2}=\frac{y}{5}=\frac{z}{7}\)và \(x^2+2y^2-z^2=5\)
d)\(\frac{x^3}{8}=\frac{y^3}{27}=\frac{z^3}{1}\)và \(x^3-y^3+5z^3=-14\)